این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Iranian Journal of Blood and Cancer
، جلد ۱۶، شماره ۴، صفحات ۲۰-۲۹
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Predictive Modeling and Spatial Analysis of Cervix Uteri and Breast Cancer in India using Machine Learning and Big Data Frameworks
چکیده انگلیسی مقاله
Background:
Cancer remains a critical public health issue in India, with rising cases of breast cancer and cervical cancer. Accurate predictions and spatial analysis of cancer incidence are essential for shaping prevention strategies and targeting interventions in high-risk regions.
Methods:
This study utilized a big data framework employing machine learning techniques from the SparkML library to predict cancer cases and analyze spatial distributions across Indian states from 2016 to 2021. Three machine learning models used Random Forest Regressor, Gradient Boosting Regressor, and Geographically Weighted Regression (GWR) were applied to the dataset. Spatial autocorrelation analysis used Moran’s I statistic to identify clustering patterns.
Results:
The spatial analysis revealed significant clustering of cancer cases, particularly in 2020, with a z-score of 2.23, a p-value of 0.02, and a Moran’s index of 0.15. Among the machine learning models, GWR achieved a predictive accuracy of 98% for both breast cancer and cervical cancer, while the Random Forest Regressor and Gradient Boosting Regressor achieved 95% and 97% accuracy, respectively, over the six-year period. Gradient Boosting outperformed other models in identifying key predictors and ensuring high predictive accuracy.
Conclusions:
The findings highlight the efficacy of Gradient Boosting and GWR in predicting cancer incidence and analyzing spatial patterns. These models provide critical insights into cancer clustering and risk factors, supporting the development of targeted prevention strategies and policy interventions for high-risk regions in India. The results emphasize the utility of machine learning techniques in public health research and cancer control.
کلیدواژههای انگلیسی مقاله
Cancer, Big data, Machine Learning, Gradient boosting, Geographically weighted Regression
نویسندگان مقاله
| Durga pujitha Krotha
Department of Information Technology, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, India.
| Fathimabi Shaik
Department of Information Technology, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, India.
نشانی اینترنتی
http://ijbc.ir/browse.php?a_code=A-10-1103-2&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
Methodology
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات