این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
Journal of Agricultural Science and Technology
، جلد ۲۷، شماره ۲، صفحات ۰-۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Classification of Some Iranian Vicia Species Using SEM Image Analysis Coupled with Conventional Texture Analysis and Deep Learning
چکیده انگلیسی مقاله
Micromorphological characteristics of seed sculpturing might be effective in circumscribing the infra-specific taxa in the genus
Vicia
. The present study was conducted to determine whether microstructural and seed coat texture data obtained from SEM images can serve as sufficient tools for delimiting
Vicia
genus. Other than visual inspections, a variety of texture-based methods, including the four conventional approaches of GLCM, LBP, LBGLCM, and SFTA, and the four pre-trained convolutional neural networks, namely, ResNet50, VGG16, VGG19, and Xception models were employed to extract features and to classify the species of
Vicia
genus using SEM images. In a subsequent step, the four unsupervised k-means, Mean-shift, agglomerative, and Gaussian mixture classification methods were used to group the identified
Vicia
spices based on the underlying features thus extracted. Moreover, the three supervised classifiers of Multilayer Perceptron Network (MLP), Support Vector Machine (SVM), and k-Nearest Neighbor (kNN) were compared in terms of capability in discriminating the different visually-identified classes. SEM results showed that three classes might be identified based on the micromorphological character-species connections and that the differences among the species in the
Vicia
genus and the validity of
Vicia sativa
could be confirmed. Regarding the performance of the classifiers, SFTA textural descriptor outperformed the GLCM, LBP, and LBGLCM algorithms, but yielded a decreased accuracy compared with deep learning models. The combined Xception model and a MLP classifier was successful to discriminate the species in the
Vicia
genus with the best classification performances of 99 and 96% in training and testing, respectively.
کلیدواژههای انگلیسی مقاله
Convolutional neural networks, Micromorphology, Plant taxonomy, Seed sculpturing, Scanning Electron Microscope (SEM).
نویسندگان مقاله
| Mehrnoosh Jafari
Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology Isfahan 84156-83111, Islamic Republic of Iran.
| Seyed Ali Mohammad Mirmohammady Maibody
Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| Mohammad Hossein Ehtemam
Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
نشانی اینترنتی
http://jast.modares.ac.ir/browse.php?a_code=A-10-76740-1&slc_lang=en&sid=23
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
پژوهشی اصیل
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات