این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Artificial Intelligence and Data Mining، جلد ۱۳، شماره ۱، صفحات ۷۵-۸۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Hybrid Image Inpainting: Combining Low-rank Minimization and Spline-based Approach
چکیده انگلیسی مقاله Image inpainting is one of the important topics in the field of image processing, and various methods have been proposed in this area. However, this problem still faces multiple challenges, as an inpainting algorithm may perform well for a specific class of images but may have poor performance for other images. In this paper, we attempt to decompose the image into a low-rank component and a sparse component using (Principal Component Analysis) PCA, and then independently restore each component. For inpainting the low-rank component, we use an algorithm based on low-rank minimization, and for restoring the sparse component, we use the concept of splines. Using splines, we can effectively restore edges and lines, whereas the restoration of these regions is challenging in most algorithms. Also, in restoring the low-rank component, we construct a tensor at each step and approximate the missing pixels in the tensor, thereby significantly improving the efficiency of the low-rank minimization idea in image inpainting. Finally, we have applied our proposed method to restore various types of images, which demonstrates the effectiveness of our proposed method compared to other inpainting methods based on PSNR and SSIM.
کلیدواژه‌های انگلیسی مقاله Target region,Spline,Low-rank minimization,Tensor

نویسندگان مقاله Kimia Peyvandi |
Faculty of Computer Science, Semnan University, Semnan, Iran.


نشانی اینترنتی https://jad.shahroodut.ac.ir/article_3394_556d069161f5f23e9d1d6415b7678d23.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات