این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۱۳، شماره ۱، صفحات ۱۰۷-۱۱۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Multilingual Language Models in Persian NLP Tasks: A Performance Comparison of Fine-Tuning Techniques
چکیده انگلیسی مقاله
This paper evaluates the performance of various fine-tuning methods in Persian natural language processing (NLP) tasks. In low-resource languages like Persian, which suffer from a lack of rich and sufficient data for training large models, it is crucial to select appropriate fine-tuning techniques that mitigate overfitting and prevent the model from learning weak or surface-level patterns. The main goal of this research is to compare the effectiveness of fine-tuning approaches such as Full-Finetune, LoRA, AdaLoRA, and DoRA on model learning and task performance. We apply these techniques to three different Persian NLP tasks: sentiment analysis, named entity recognition (NER), and span question answering (QA). For this purpose, we conduct experiments on three Transformer-based multilingual models with different architectures and parameter scales: BERT-base multilingual (~168M parameters) with Encoder only structure, mT5-small (~300M parameters) with Encoder-Decoder structure, and mGPT (~1.4B parameters) with Decoder only structure. Each of these models supports the Persian language but varies in structure and computational requirements, influencing the effectiveness of different fine-tuning approaches. Results indicate that fully fine-tuned BERT-base multilingual consistently outperforms other models across all tasks in basic metrics, particularly given the unique challenges of these embedding-based tasks. Additionally, lightweight fine-tuning methods like LoRA and DoRA offer very competitive performance while significantly reducing computational overhead and outperform other models in Performance-Efficiency Score introduced in the paper. This study contributes to a better understanding of fine-tuning methods, especially for Persian NLP, and offers practical guidance for applying Large Language Models (LLMs) to downstream tasks in low-resource languages.
کلیدواژههای انگلیسی مقاله
Fine-Tuning Techniques,PEFT,Low-Resource Languages,Multilingual Language Models,BERT.
نویسندگان مقاله
Ali Reza Ghasemi |
Artificial Intelligence Group, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran.
Javad Salimi Sartakhti |
Artificial Intelligence Group, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran.
نشانی اینترنتی
https://jad.shahroodut.ac.ir/article_3392_b93d594c21a9220c5492d11a77391e56.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات