این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 3 دی 1404
فیزیک زمین و فضا
، جلد ۵۰، شماره ۴، صفحات ۱۷۹-۱۸۹
عنوان فارسی
FDTD Simulation Study of Brillouin Scattering Emission Lines Stimulated by High Frequency Radio Waves in the Ionospheric Plasmas
چکیده فارسی مقاله
A high-power electromagnetic (EM) wave can decay into an ion acoustic wave and a scattered EM wave in a plasma through a process called Stimulated Brillouin Scattering (SBS). A one-dimensional fully electromagnetic Finite-Difference Time-Domain (FDTD) method is used in a magnetized plasma with an increasing density ramp to simulate the propagation of a linearly polarized high-frequency (HF) radio wave traveling through the plasma along magnetic field lines. The study shows that the plasma splits the linearly polarized EM wave into two separate counter-rotating circularly polarized waves: the X-mode and the O-mode waves. The specific cutoff points for each of these circularly polarized waves are illustrated, with the X-mode reflecting at lower frequencies compared to the O-mode. As the radio wave approaches the cutoff frequency, it decays into a scattered high-frequency EM wave and a low-frequency wave. By analyzing the frequency spectrum of the scattered wave and the excited electrostatic low-frequency wave, the electrostatic wave is identified as an ion-acoustic (IA) mode, thus confirming the process as SBS. The growth rate of the excited longitudinal electrostatic wave is studied by calculating the excited longitudinal wave energy. The evolution of energy transfer and conversion from the HF wave to IA wave, as well as electron and ion kinetic energy, is investigated. The results indicate that electron and ion density perturbations experience similar fluctuations.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
FDTD Simulation Study of Brillouin Scattering Emission Lines Stimulated by High Frequency Radio Waves in the Ionospheric Plasmas
چکیده انگلیسی مقاله
A high-power electromagnetic (EM) wave can decay into an ion acoustic wave and a scattered EM wave in a plasma through a process called Stimulated Brillouin Scattering (SBS). A one-dimensional fully electromagnetic Finite-Difference Time-Domain (FDTD) method is used in a magnetized plasma with an increasing density ramp to simulate the propagation of a linearly polarized high-frequency (HF) radio wave traveling through the plasma along magnetic field lines. The study shows that the plasma splits the linearly polarized EM wave into two separate counter-rotating circularly polarized waves: the X-mode and the O-mode waves. The specific cutoff points for each of these circularly polarized waves are illustrated, with the X-mode reflecting at lower frequencies compared to the O-mode. As the radio wave approaches the cutoff frequency, it decays into a scattered high-frequency EM wave and a low-frequency wave. By analyzing the frequency spectrum of the scattered wave and the excited electrostatic low-frequency wave, the electrostatic wave is identified as an ion-acoustic (IA) mode, thus confirming the process as SBS. The growth rate of the excited longitudinal electrostatic wave is studied by calculating the excited longitudinal wave energy. The evolution of energy transfer and conversion from the HF wave to IA wave, as well as electron and ion kinetic energy, is investigated. The results indicate that electron and ion density perturbations experience similar fluctuations.
کلیدواژههای انگلیسی مقاله
Ion-Acoustic Wave,HF wave,Ionosphere,O-mode,X-mode
نویسندگان مقاله
Sahar Barzegar |
Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.
نشانی اینترنتی
https://jesphys.ut.ac.ir/article_100923_88f844b1a807367b679c176ae10ee6c8.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات