این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Mining and Geo-Engineering، جلد ۵۹، شماره ۱، صفحات ۸۳-۸۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Improving energy efficiency in the mining Industry: an LSTM-ANN predictive model for sieve refusal in grinding mills
چکیده انگلیسی مقاله The integration of Artificial Intelligence (AI) within Mine 4.0 has significantly advanced the mining industry by enhancing performance, efficiency, safety, and overall productivity. Despite these advancements, a critical gap exists in predicting sieve refusal, a key parameter affecting grinding mill efficiency and product quality, particularly when accounting for the temporal and nonlinear dependencies inherent in mining data. This study introduces a hybrid predictive model that combines Long Short-Term Memory networks (LSTM) with Artificial Neural Networks (ANN) to predict sieve refusal in grinding mills utilizing actual process and energy data from mining industry databases. The LSTM component captured the temporal dynamics and time-delayed dependencies of variables and power consumption. Concurrently, the ANN component modeled complex, nonlinear relationships among input variables. This hybrid approach effectively addressed the intrinsic characteristics of mining data, which are often overlooked in traditional models. Comparative analyses demonstrated that the proposed LSTM-ANN model significantly outperformed existing advanced regression and deep learning methods, establishing it as a state-of-the-art solution for sieve refusal prediction. The enhanced predictive accuracy provided direct support for operational planning and scheduling, contributing to improved energy efficiency and cost-effectiveness in mining operations. By addressing the underexplored temporal and spatial interrelations between variables and sieve refusal, this research fills a notable gap in the application of deep learning to grinding mill operations. The findings underscore the transformative potential of advanced AI models in optimizing mining practices, aligning with the broader objectives of Mine 4.0 to leverage intelligent data analysis for operational excellence.
کلیدواژه‌های انگلیسی مقاله Energy Efficiency,Grinding Mills,LSTM-ANN Model,Mining Industry,Sieve Refusal Prediction

نویسندگان مقاله Chaimae Loudari |
Laboratory of Applied Mathematics and Decision-Making Informatics (LMAID), National School of Mines of Rabat (ENSMR), Rabat, Morocco.

Moha Cherkaoui |
Laboratory of Applied Mathematics and Decision-Making Informatics (LMAID), National School of Mines of Rabat (ENSMR), Rabat, Morocco.

Imad El Harraki |
Laboratory of Applied Mathematics and Decision-Making Informatics (LMAID), National School of Mines of Rabat (ENSMR), Rabat, Morocco.

Rachid Bennani |
Digitalization and Microelectronic Smart Devices, MAScIR, Rabat, Morocco.

Mohamed El Adnani |
LISI Laboratory University of Cadi Ayyad, UCA, Marrakech, Morocco.

EL Hassan Abdelwahed |
LISI Laboratory University of Cadi Ayyad, UCA, Marrakech, Morocco.

Intissar Benzakour |
Reminex Research Center, MANAGEM Group, Marrakech.

François Bourzeix |
Embedded Systems and Artificial Intelligence Department, MAScIR, Rabat, Morocco.

Karim Baina |
Al-Qualsadi Research and Development Team, ENSIAS, Rabat, Morocco.


نشانی اینترنتی https://ijmge.ut.ac.ir/article_100636_1f70d07bcc3521a5340144259a5701a5.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات