این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
پردازش علائم و داده ها، جلد ۲۱، شماره ۴، صفحات ۱-۱۴

عنوان فارسی تشخیص اختلال در رشد کودکان به کمک معماری مبتنی بر انتقال یادگیری به روش چکانش دانش
چکیده فارسی مقاله

تقویت دستگاه‌های پزشکی با اینترنت اشیا و فناوری هوش مصنوعی تشخیصی، ضمن درنظرگرفتن محدودیت‌های این سامانه‌ها، پتانسیل مدرن‌سازی و ارتقای رویکرد تشخیصی نسل‌های آینده سامانه‌های اینترنت اشیا در حوزه سلامت را دارد. یکی از دستگاه‌های پرکاربرد در پاراکلینیک، دستگاه رادیوگرافی است. ارزیابی خودکار ناهنجاری‌ها و سن استخوان از تصاویر رادیوگرافی دست چپ، به رادیولوژیست‌ها، متخصصان اطفال و پزشکی قانونی در تصمیم‌گیری در مورد وضعیت رشد جوانان کمک می‌کند. دستگاه­‌های اینترنت اشیا در پزشکی به علت محدودیت منابع قادر به پردازش حجم زیاد داده­‌ها نیستند. در این مقاله، با استفاده از یک مدل چکانش دانش تجزیه‌شده از شبکه‌های عصبی پیچشی معلم به شبکه دانش‌­آموز برای طبقه‌بندی سن استخوان استفاده شد‌ه‌است. این روش از حجم محاسبات موردنیاز برای دستگاه‌­های لبه می‌­کاهد. ارزیابی روش ارائه با استفاده از مجموعه‌داده‌های اطلس دست دیجیتال انجام شد‌ه‌است. نتیجه روش با معیارهای دقت، بازیافت، صحت و میانگین خطای مطلق ارزیابی شد‌ه‌است. مدل پیشنهادی 47/96 درصد دقت آزمون را برای طبقه‌بندی سن استخوان به‌دست می‌آورد.

کلیدواژه‌های فارسی مقاله انتقال یادگیری، تشخیص سن، چکانش دانش، ناهنجاری رشد

عنوان انگلیسی Diagnosing Children's Developmental Disorders By A Transfer Learning Based Architecture Using Knowledge Distillation
چکیده انگلیسی مقاله
Enhancing medical devices with Internet of Things (IOT) and diagnostic artificial intelligence technology, while considering the constraints of these systems, has the potential to modernize and enhance the diagnostic approach of future generations of Internet of Things systems in healthcare. The radiography device, commonly used in paraclinical settings, is widely used in various hospital departments. The automated assessment of abnormalities and bone age from radiographic images of the left hand assists radiologists, pediatricians, and forensic experts in determining the developmental stage of young individuals. The IoT devices in medicine are unable to process large amounts of data due to limited resources. This article uses a teacher-student network for bone age classification, using the decomposed knowledge distillation model of convolutional neural networks. This approach minimizes the computational resources needed for edge devices. The proposed method is comprised of two sequential steps.  In the preprocessing step, the initial phase involves the elimination of non-clinical data and artifacts. This is followed by the extraction of region of interest (ROI). In this phase of the procedure, only the hand portion of the patient's X-ray remains for further evaluation. The subsequent phase involves the delineation of the boundaries of the region of interest. This is necessary because, in certain age groups, some bones are not ossified. Consequently, reliance on bones as landmarks is precluded.  In the second step, The extracted ROI from the preceding step is utilized to train the teacher model. The student model utilizes the teacher model's knowledge to learn how to predict patient age. Therefore, the present study puts forth transfer learning methodologies founded on the distillation of knowledge, with the aim of facilitating the transference of knowledge between teacher and student models.
 The proposed method is based on the data set of the Digital Hand Atlas (DHA) database. The evaluation criteria used in this work are Accuracy, recall, permission and mean absolute error (MAE). The proposed model achieves 96/47% test accuracy for bone age classification.
کلیدواژه‌های انگلیسی مقاله Developmental Disorders, Knowledge Distillation, Bone Age, Deep Learning

نویسندگان مقاله حمیرا سرابی سرورانی | Homeyra Sarabi
Razi University
دانشجوی کارشناسی‌ارشد مهندسی فناوری اطلاعات، دانشکده برق و کامپیوتر، دانشگاه رازی، کرمانشاه، ایران

فردین ابدالی محمدی | Fardin Abdali Mohammadi
Razi University
دانشیار گروه مهندسی کامپیوتر و فناوری اطلاعات، دانشکده برق و کامپیوتر، دانشگاه رازی، کرمانشاه، ایران


نشانی اینترنتی http://jsdp.rcisp.ac.ir/browse.php?a_code=A-10-2457-1&slc_lang=fa&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده مقالات پردازش تصویر
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات