| چکیده انگلیسی مقاله |
Introduction In the transition from an introverted traditional society to an extroverted modern one, many places cannot withstand the tensions of modernity and the conflicts of dominant culture. The effort to create reliable, safe, economical, and resilient infrastructure against climatic hazards is an undeniable principle in the present age. Ancient hydraulic structures, as a water heritage, contain successful structural, functional, and managerial solutions for sustainability and resilience against harsh ecological conditions. Therefore, deriving ancient perspectives regarding the human-nature relationship and nature-based solutions, to develop practical patterns for addressing natural and human crises, as well as applying them in the planning processes of urban landscapes and watersheds, can enhance the resilience of contemporary cities. Considering that the ancestors of each region developed management strategies in response to social, ecological challenges, and human needs, taking into account cultural, economic, and geographical characteristics, and that these strategies, along with their functions, experiences, values, and beliefs, have been tested over thousands of years, they have laid the foundations for the formation of ecological wisdom. In this study, the main research question is posed as follows: How will the development of principles and rules governing the structure and function of water heritage affect the realization of resilient cities against flooding? Therefore, by selecting and examining a sample of ancient water structures in ancient China, the ancient thoughts regarding the relationship between humans and nature were inferred, and a practical pattern for achieving resilient cities against flooding was outlined. Materials and methods This study is a descriptive-analytical investigation aimed at analyzing the drainage system pattern of Tuancheng in ancient China to achieve resilience against urban flooding. Using an inductive-comparative method, the structural-functional principles and rules governing the Tuancheng drainage system, as an ancient urban flood management experience, were compared with modern experiences at multiple scales. Based on this comparison, a practical pattern for achieving resilience against flooding and water resource management was developed. The steps of the study can be described as follows:Examining the drainage system of ancient China, a symbol of ecological wisdom in ancient heritage, Clarifying resilience criteria in water structures and drainage, Inferring the principles and rules governing the drainage system of ancient China, Developing a practical pattern for resilience against floods and runoff in contemporary cities. Results and discussion Ancient hydraulic structures engineered by past cultures are based on the realization of fundamental hydrological functions and provide valuable insights into preserving water resources, managing runoff, maintaining ecological integrity, managing watersheds, protecting soil and biodiversity, etc. Despite the vast differences in complexity, technological development, and resource demands between ancient indigenous communities and the modern world, these insights can inspire contemporary societies in land management. The design principles governing these ancient structures effectively preserve water and natural systems, enhance ecological processes and functions, and increase ecosystem services. Notably, they offer efficient utilization of rainwater resources to mitigate the challenge of water scarcity in the present age. Furthermore, by reducing the occurrence of natural disasters, flooding, and economic losses, these structures offer a reliable method for managing water resources and saving financial costs for local communities. They also create investment opportunities in upgrading infrastructure, engineering products, and new technologies. The combination of green and gray infrastructure, clustered design, and multifunctional performance significantly improves efficiency, performance, stress resistance, and reduces damages and costs. Common technologies in the formation of sponge cities include the use of green roofs, open and green spaces, green parking lots, artificial wetlands for collecting rainwater and runoff, permeable ponds, facilities to maintain biological processes, permeable pavements, reducing rigid and impermeable surfaces, integrated ecological management, protecting aquatic ecosystems, and utilizing rainwater resources. These approaches facilitate the harmonious development of urban and natural environments, the development of green-blue infrastructure, and the enhancement of resilience against water crises. Conclusions The results of the study indicate that the manifestation of the principles and rules of ecological wisdom through various policies and strategies, such as conservation plans, infiltration practices, runoff storage, runoff transfer, runoff filtration, and landscaping at multiple structural-functional scales, can provide a fundamental pattern for achieving sponge cities that are resilient to flooding. This concept reflects an environmental civilization capable of reducing the impacts of urban development on natural ecosystems, integrating green-blue and gray infrastructures, managing aquifers, and addressing various social, economic, and ecological dimensions. It aims to manage water resources and resolve the water crisis in many countries, including Iran. |