این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
Journal of Mining and Environment
، جلد ۱۶، شماره ۳، صفحات ۹۴۷-۹۶۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Categorization of Mineral Resources using Random Forest Model in a Copper Deposit in Peru
چکیده انگلیسی مقاله
This work aimed to categorize mineral resources in a copper deposit in Peru, using a machine learning model, integrating the K-prototypes clustering algorithm for initial classification and Random Forest (RF) as a spatial smoother. A total of 318,443 blocks were classified using geostatistical and geometric variables derived from Ordinary Kriging (OK) such as kriging variance, sample distance, number of drillholes, and geological confidence. The model was trained and validated using precision, recall, and F1-score metrics. The results indicated an overall accuracy of 97%, with the measured category achieving 98% precision and an F1-score of 0.98. The total estimated tonnage was 5,859.36 Mt, distributed as follows: 1,446.13 Mt (measured), 2,249.22 Mt (Indicated), and 2,164.01 Mt (Inferred), with average copper grades of 0.43%, 0.33%, and 0.31% Cu, respectively. Compared to the traditional geostatistical methods, this hybrid approach improves classification objectivity, spatial continuity, and reproducibility, minimizing abrupt transitions between categories. The RF model proved to be a robust tool, reducing classification inconsistencies and better capturing geological uncertainty. Future studies should explore hybrid models (K-means with RF, ANN with K-Prototypes, gradient boosting, and deep learning) and incorporate economic variables to optimize decision-making in resource estimation.
کلیدواژههای انگلیسی مقاله
Random Forest,mineral resource categorization,Geostatistics,kriging variance
نویسندگان مقاله
Marco Antonio Cotrina-Teatino |
Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru
Jairo Jhonatan Marquina-Araujo |
Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru
Jose Nestor Mamani-Quispe |
Faculty of Chemical Engineering, National University of the Altiplano of Puno, Puno, Peru
Solio Marino Arango-Retamozo |
Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru
Johnny Henrry Ccatamayo-Barrios |
Department of Mining Engineering, Universidad Nacional San Cristobal de Huamanga, Ayacucho, Peru
Joe Alexis Gonzalez-Vasquez |
Department of Industrial Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru
Teofilo Donaires-Flores |
Faculty of Chemical Engineering, National University of the Altiplano of Puno, Puno, Peru
Maxgabriel Alexis Calla-Huayapa |
Faculty of Industrial Process Engineering, National University of Juliaca, Juliaca, Peru
نشانی اینترنتی
https://jme.shahroodut.ac.ir/article_3419_6647bcbcd57e640bbd31f1567ef0f5a7.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات