این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
Iranian Journal of Medical Physics
، جلد ۲۲، شماره ۱، صفحات ۶-۱۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Myocardial Iron Overload Assessment with Automatic Segmentation of Cardiac MR Images based on Deep Neural Networks
چکیده انگلیسی مقاله
Introduction: Heart failure due to myocardial iron overload is one of the main causes of death in thalassemia major (TM) patients. Therefore, cardiac magnetic resonance (CMR) imaging method with a multi-echo sequence can be used to assess the iron overload of TM patients. This study aimed to evaluate the myocardial iron overload in TM patients with automatic left ventricular (LV) segmentation of CMR images. Material and Methods: Thirty-six TM patients were selected to acquire CMR images and clinical data. Automatic LV segmentation was implemented with U-Net, an automatically adapted deep convolutional neural network based on U-Net. With the signal intensity of the LV segmented area, T2* value can be calculated at different echo times, a widely used and approved method to assess myocardial iron overload. Results: The accuracy of LV segmentation as measured by intersection-over-:union: (0.95) was substantially higher than non-deep learning based methods and at par with other deep learning based methods like. In addition, our results indicate that the proposed method outperformed in assessing LV iron overload over other deep learning based methods in terms of negative predictive value, positive predictive value, and Jaccard. Conclusion: Relying on these outcomes, the proposed method as a deep learning based model yields better LV segmentation and notably impacts assessing myocardial iron overload.
کلیدواژههای انگلیسی مقاله
Thalassemia Major, Iron overload, Myocardium, magnetic resonance imaging, Deep learning, Heavily T2 Weighted MRM
نویسندگان مقاله
| Mohamad Amin Bakhshali
Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| Maryam Gholizadeh
Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany.
| Parvaneh Layegh
Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| Saeid Eslami
Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
نشانی اینترنتی
https://ijmp.mums.ac.ir/article_24009.html
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Paper
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات