این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مجله اپیدمیولوژی ایران، جلد ۱، شماره ۱، صفحات ۶۵-۷۲

عنوان فارسی تحلیل درستنمایی ماکزیمم مدل رگرسیون لجستیک در حالتی که داده های متغیرهای پیشگو کامل نیستند ولی متغیرهای کمکی وجود دارند
چکیده فارسی مقاله مقدمه و هدف: داده های گمشده در بسیاری از مطالعات آماری از جمله مدلهای رگرسیونی وجود دارند و باعث کاهش دقت برآورد می شوند. تا کنون روشهای گوناگونی برای مقابله با مشکل داده های گمشده ابداع شده که عموما بر داده های گمشده متغیر پاسخ متمرکز بوده است حال آنکه متغیرهای پیشگو نیز می توانند دستخوش تغییر و از دست رفتن اطلاعات شوند.مواد و روشها: در این تحقیق ضمن بررسِی روش جانهِی داده هاِی گمشده با استفاده از الگوریتم EM و متغیر کمکی, نتایج حاصل از این روش را با روش تحلیل مورد کامل در یک مدل رگرسیون لجستیک پیرامون عوامل مؤثر بر انتخاب نوع زایمان مقایسه می کنیم. یافته ها: داده هاِی مورد استفاده در این مقاله از یک مطالعه توصیفِی پیرامون عوامل مرتبط با انتخاب نوع زایمان در زنان مراجعه کننده به مراکز بهداشتِی و درمانِی شهر تهران بدست آمده است. حجم نمونه دراِین تحقِیق 385 نفر بوده و از روش نمونه گِیرِی چند مرحله اِی انتخاب شدندو مشخصات فردِی، سوابق ماماِیِی، نوع نگرش و عوامل اجتماعِی نمونه ها از طرِیق پرسشنامه ثبت شدند. براِی مقایسه میزان کارایِی دو روش، برآورد انحراف معیار پارامترها مورد استناد قرار گرفت. بحث و نتیجه گیری : نتایج حاصل نشان می دهد روش تحلیل درستنمایی با الگوریتم EM در مقایسه با روش مورد کامل کارایی بهترِی دارد. مشکل داده هاِی گمشده در بسیارِی از مطالعات آمارِی وجود دارد و موجب اریبی و کاهش کارایی می شوند. در این بررسِی نشان داده ایم استفاده از الگوریتم EM براِی جانهِی گمشده هادر یک مدل رگرسیون لجستیک با متغیرهاِی توضیحِی گسسته و سپس تحلیل مدل، از روش مورد کامل که مستلزم حذف گمشده ها به همراه قسمتهایی از اطلاعات است کاراتر است. از سوی دیگر اگر متغیر توضیحِی ناکامل پیوسته باشد بدست آوردن مدل، روشی متفاوت می طلبد و یا می توان با تبدیل آن به متغیری گسسته از روش قبل استفاده کرد.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Maximum likelihood analysis in logistic regression with missing covariate data and auxiliary information: Application to factors associated with selection of the delivery method in pregnant women
چکیده انگلیسی مقاله Background and Objectives: Missing data exist in many studies, e.g. in regression models, and they decrease the model's efficacy. Many methods have been suggested for handling incomplete data: they have generally focused on missing outcome values. But covariate values can also be missing.Materials and Methods: In this paper we study the missing imputation by the EM algorithm and auxiliary variable and compare the result with case-complete analysis in a logistic regression model dealing with factors that influence the choice of the delivery method.Our data came from a cross-sectional study of factors associated with the choice of the delivery method in pregnant women. The sample size in this cross-sectional study was 365 and the data were collected through interviews, using questionnaires covering several demographic variables, delivery history, attitude, and some social factors. We used standard deviations to compare the efficiency of the two methods.Results: The results show that maximum likelihood analysis by EM algorithm is more effective than case-complete analysis.The problem of missing data is common in surveys and it causes bias and decreased model efficacy. Here we show that the EM algorithm for imputation in logistic regression with missing values for a discrete covariate is more effective than case-complete analysis.Conclusion: On the other hand if missing values occur for a continuous covariate then we have to use other methods or change the variable into a discrete one.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله محمد امین پورحسینقلی | m a pohrhoseingholi
dept. of biostatistic , shaheed beheshti, univeristy of medical sciences, tehran, iran correspondin
دانشجوی کارشناسی ارشد آمار زیستی, گروه آمار زیستی دانشکده پیراپزشکی , دانشگاه علوم پزشکی شهیدبهشتی
سازمان اصلی تایید شده: دانشگاه علوم پزشکی شهید بهشتی (Shahid beheshti university of medical sciences)

حمید علوی مجد | h alavi majd
ph.d dept. of health and commuhity medicine school of medicine shaheed behesti university of medic
استادیار, گروه آمار زیستی , دانشکده پیراپزشکی , دانشگاه علوم پزشکی شهیدبهشتی
سازمان اصلی تایید شده: دانشگاه علوم پزشکی شهید بهشتی (Shahid beheshti university of medical sciences)

علیرضا ابدی | a r abadi
ph.d shaheed behesti university of medical sciences, terhan, iran.
استادیار گروه پزشکی اجتماعی و بهداشت , دانشکده پزشکی , دانشگاه علوم پزشکی شهیدبهشتی
سازمان اصلی تایید شده: دانشگاه علوم پزشکی شهید بهشتی (Shahid beheshti university of medical sciences)

سیمین پروانه وار | s parvanehvar
shaheed behesti university of medical sciences, terhan, iran.
دانش آموخته کارشناسی ارشد مامایی , دانشگاه علوم پزشکی شهیدبهشتی
سازمان اصلی تایید شده: دانشگاه علوم پزشکی شهید بهشتی (Shahid beheshti university of medical sciences)


نشانی اینترنتی http://irje.tums.ac.ir/browse.php?a_code=A-10-25-206&slc_lang=fa&sid=fa
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده عمومی
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات