این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
Cell Journal
، جلد ۲۲، شماره supplement ۱، صفحات ۳۸-۴۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Investigating The Alterations of Oxidative Stress Status, Antioxidant Defense Mechanisms, MAP Kinase and Mitochondrial Apoptotic Pathway in Adipose-Derived Mesenchymal Stem Cells from STZ Diabetic Rats
چکیده انگلیسی مقاله
Objective:
This study aimed to investigate the reliability of diabetic adipose-derived stem cells (ADSCs) for autologous
cell-based therapies by exploring the functionality of signalling pathways involved in regulating oxidative stress and
apoptosis.
Materials and Methods:
In this experimental study, ADSCs were isolated from streptozotocin (STZ)-induced diabetic
rats (dADSCs) and normal rats (nADSCs). The colonies derived from dADSCs and nADSCs were compared by colony-forming unit (CFU) assay. Reactive oxygen species (ROS) formation and total antioxidant power (TAP) were also measured. Furthermore, the expression of antioxidant enzymes, including catalase (Cat), superoxide dismutase (Sod)-1 and -3, glutathione peroxidase (Gpx)-1, -3 and -4 was measured at mRNA level by semi-quantitative reverse transcriptase polymerase chain reaction assay. The expression of Bax, Bcl2, caspase-3, total and phosphorylated c-Jun N-terminal kinase (JNK) and P38 Mitogen-Activated Protein Kinase (MAPK) at protein level was analyzed by western blotting.
Results:
The results of this study indicated that viability and plating efficiency of dADSCs were significantly lower than
those of nADSCs. ROS generation and TAP level were respectively higher and lower in dADSCs. The gene expression of antioxidant enzymes, including Cat, Sod-1, Gpx-3 and Gpx-4 in dADSCs was significantly greater than that in nADSCs. However, Sod-3 and Gpx-1 mRNA levels were decreased in dADSCs. Moreover, Bax/Bcl-2 protein ratio, caspase-3 protein expression and phosphorylation of JNK and P38 proteins were increased in dADSCs compared to nADSCs.
Conclusion:
Taken together, diabetes might impair the cellular functions of dADSCs as candidates for autologous cellbased therapies. This impairment seems to be mediated by JNK, P38 MAPKs, and mitochondria pathway of apoptosis
and partly by disruption of antioxidant capacity.
کلیدواژههای انگلیسی مقاله
Adipose-Derived Stem Cells, Antioxidant, Apoptosis, Cell therapy, Diabetes
نویسندگان مقاله
Azadeh Aminzadeh |
Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
Neda Tekiyeh Maroof |
Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
Mehrnaz Mehrabani |
Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
Kobra Bahrampour Juybari |
Department of Pharmacology, Semnan University of Medical Science, Semnan, Iran
Ali Mohammad Sharifi |
Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
نشانی اینترنتی
https://www.celljournal.org/article_251694_2a1a9afb67d499b0a2e3c57ca9fc4741.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات