این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
Journal of Biostatistics and Epidemiology
، جلد ۱۰، شماره ۴، صفحات ۴۶۹-۴۸۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Additive value of computed tomography severity scores to predict lengths of stay in hospital and ICU for COVID-19 patients: a machine learning study
چکیده انگلیسی مقاله
Introduction: During the outbreak of COVID-19, most hospitals faced resource shortages due to the great surges in the influx of infected COVID-19 patients and demand exceeding capacities. Predicting the lengths of stay (LOS) of the patients can help to make proper resource-planning decisions. CT-SS accurately determines the disease severity and could be considered an appropriate prognostic factor to predict patients’ LOS. Objective: In this study, we evaluate the additive value of CT-SS in the prediction of hospital and ICU LOSs of COVID-19 patients. Methods: This single-center study retrospectively reviewed a hospital-based COVID-19 registry database from 6854 cases of suspected COVID-19. Four well-known ML classification models including kNN, MLP, SVM, and C4.5 decision tree algorithms were used to predict hospital and ICU LOSs of COVID-19 patients. The confusion matrix-based performance measures were used to evaluate the classification performances of the ML algorithms. Results: For predicting hospital LOS, the MLP model with an accuracy of 96.7%, sensitivity of 100.0%, precision of 93.8%, specificity of 93.4%, and AUC of around 99.4% had the best performance among the other three ML techniques. This algorithm with 95.3% sensitivity, 86.2% specificity, 90.8% accuracy, 87.3% precision, 91.2% F-Measure, and an AUC of 95.8% had also the best performance for predicting ICU LOS of the patients. Conclusion: The performances of the ML predictive models for predicting hospital and ICU LOSs of COVID-19 patients were improved when CT-SS data was integrated into the input dataset.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
| Seyed Salman Zakariaee
Department of Medical Physics, Faculty of Paramedical Sciences, Ilam University of Medical Sciences, Ilam
| Mikaeil Molazadeh
Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| Hossein Salmanipour
Department of Radiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| Negar Naderi
Department of Midwifery, Faculty of Nursing and Midwifery, Ilam University of Medical Sciences, Ilam, Iran
نشانی اینترنتی
https://jbe.tums.ac.ir/index.php/jbe/article/view/1536
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات