این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
Iranian Journal of Chemistry and Chemical Engineering
، جلد ۴۴، شماره ۴، صفحات ۱۱۹۷-۱۲۲۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Hybridizing Metaheuristic Methods with AI for Accurate Prediction of Residential Energy Consumption
چکیده انگلیسی مقاله
Accurately predicting Total Energy Consumption in the Residential Sector is essential for sustainable energy planning. This study introduces four hybrid metaheuristic-artificial intelligence models—Earthworm Optimization Algorithm (EWAMLP), Stochastic Fractal Search (SFSMLP), Vortex Search (VSMLP), and Shuffled Complex Evolution (SCEMLP)—to enhance prediction accuracy. The models were evaluated using Root Mean Squared Error (RMSE) and R-squared (R2) on training and testing datasets, with swarm sizes optimized for each method. SFSMLP achieved the best overall performance, ranking first with the highest R2 values of 0.9936 (training) and 0.9859 (testing) and the lowest total score. VSMLP, with R2 values of 0.9915 (training) and 0.9866 (testing), tied for first in accuracy while demonstrating efficiency with an optimal swarm size of 300. SCEMLP, despite using the smallest swarm size (50), maintained competitive accuracy with R2 values of 0.9911 (training) and 0.9842 (testing), ranking third overall. EWAMLP, with R2 values of 0.9673 (training) and 0.9570 (testing), showed reliable but slightly lower performance, ranking fourth. These findings highlight the potential of hybrid metaheuristic-AI models for precise energy consumption predictions. The superior performance of SFSMLP and VSMLP suggests their suitability for applications requiring high accuracy, while SCEMLP offers a balance of efficiency and reliability. This study provides a robust framework for energy modeling, contributing to advancements in residential energy management and sustainability.
کلیدواژههای انگلیسی مقاله
energy consumption,Residential Sector,artificial intelligence,Metaheuristic algorithm
نویسندگان مقاله
Jianjun Pang |
Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd. Guangdong Guangzhou,510665, P.R. CHINA
Yi Zhou |
Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd. Guangdong Guangzhou,510665, P.R. CHINA
Hua Huang |
Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd. Guangdong Guangzhou,510665, P.R. CHINA
Jinqing Lin |
Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd. Guangdong Guangzhou,510665, P.R. CHINA
Yuxin Yan |
Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd. Guangdong Guangzhou,510665, P.R. CHINA
نشانی اینترنتی
https://ijcce.ac.ir/article_721356_ea77e97951a44eba011714830bb0cf18.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات