این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Electrical and Electronic Engineering، جلد ۲۱، شماره ۳، صفحات ۳۳۷۳-۳۳۷۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی BIMLP Model Based on Deep Learning for Predicting Electrical Load Demand
چکیده انگلیسی مقاله The accurate prediction of electricity demand is crucial for efficient energy management and grid operation. However, the complexities of demand patterns, weather variability, and socioeconomic factors make it challenging to forecast demand with high accuracy. To address this challenge, this research proposes a novel hybrid machine-learning approach for predicting electricity demand. In this research, first, different regression methods were investigated to solve the problem, the results showed that the multi-layer perceptron (MLP) regression model has the best performance in predicting electricity demand. Furthermore, the proposed system, BIMLP (Bagging-Improved MLP), is designed to iteratively improve its parameters using a binary search algorithm and reduce the learning error using bagging, a technique for ensemble learning. The proposed system was applied to the Electric Power Consumption data set and achieved a value of 0.9734 in the r2 criterion. The results of implementing and evaluating the proposed system demonstrate its satisfactory performance compared to existing techniques.
کلیدواژه‌های انگلیسی مقاله MLP, Bagging, Regression, Electrical load demand

نویسندگان مقاله | Somayeh Talebzadeh
Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.


| Reza Radfar
Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran


| Abbas Toloei Ashlaghi
Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran



نشانی اینترنتی http://ijeee.iust.ac.ir/browse.php?a_code=A-10-5253-1&slc_lang=en&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده Artificial Intelligence Techniques
نوع مقاله منتشر شده Research Paper
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات