این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Electrical and Electronic Engineering، جلد ۲۱، شماره ۳، صفحات ۳۴۴۵-۳۴۴۵

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Efficient Tactile Perception in Robotics: Reducing Data Redundancy through Compression and Normalization in Spiking Graph Convolutional Networks
چکیده انگلیسی مقاله Touch, one of the fundamental human senses, is essential for understanding the environment by enabling object identification and stable movements. This ability has inspired significant advancements in artificial neural networks for object recognition, texture identification, and slip detection applications. However, despite their remarkable capacity to simulate tactile perception, artificial neural networks consume considerable energy, limiting their broader adoption. Recent developments in electronic skin technology have brought robots closer to achieving human-like tactile perception by enabling asynchronous responses to temperature and pressure changes, thereby enhancing robotic precision in tasks like object manipulation and grasping. This research presents a Spiking Graph Convolutional Network (SGCN) designed for processing tactile data in object recognition tasks. The model addresses the redundancy in spiking-format input data by employing two key techniques: (1) data compression to reduce the input size and (2) batch normalization to standardize the data. Experimental results demonstrated a 93.75% accuracy on the EvTouch-Objects dataset, reflecting a 4.31% improvement, and a 78.33% accuracy on the EvTouch-Containers dataset, representing an 18% improvement. These results underscore the SGCN's effectiveness in reducing data redundancy, decreasing required time steps, and optimizing tactile data processing to enhance robotic performance in object recognition.
کلیدواژه‌های انگلیسی مقاله Tactile Perception, Graph Convolutional Network, Spiking Neural Network, Redundancy Reduction, Batch Normalization.

نویسندگان مقاله | Elahe Rezaee Ahvanooii
Electrical and Computer Engineering Department, Semnan University, Semnan, Iran


| Sheis Abolmaali
Electrical and Computer Engineering Department, Semnan University, Semnan, Iran



نشانی اینترنتی http://ijeee.iust.ac.ir/browse.php?a_code=A-10-3012-4&slc_lang=en&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده Robotics
نوع مقاله منتشر شده Research Paper
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات