این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
Iranian Journal of Numerical Analysis and Optimization
، جلد ۱۵، شماره Issue ۲، صفحات ۴۷۵-۵۰۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Unite and conquer approach for data clustering based on particle swarm optimization and moth flame optimization
چکیده انگلیسی مقاله
Data clustering is a widely used technique in various domains to group data objects according to their similarity. Clustering molecules is a useful process where you can easily subdivide and manipulate and large datasets to group compounds into smaller clusters with similar properties. To dis-cover new molecules with optimal properties and desired biological activity, can be used by comparing molecules and their similarities. A prominent clustering technique is the k-means algorithm, which assigns data objects to the nearest cluster center. However, this algorithm relies on the ini-tial selection of the cluster centers, which can affect its convergence and quality. To address this issue, metaheuristic algorithms have been proposed as a type of approximate optimization algorithm capable of identifying almost optimal solutions. In this paper, a new meta-heuristic approach is proposed by combining two algorithms of particle swarm optimization (PSO) and moth flame optimization (MFO), following that, it is used to improve data clustering. The fficiency of the proposed approach is evaluated utilizing benchmark functions F1-F23. Its efficiency is evaluated with PSO and MFO algorithms on different datasets. Our experiential results show that the suggested approach exceeds the PSO and MFO algorithms with respect to speed of convergence and clustering quality.
کلیدواژههای انگلیسی مقاله
Data clustering,k-means clustering,Metaheuristic optimization,Particle swarm optimization,Moth flame optimization
نویسندگان مقاله
E. Mosavi |
Department of Computer Science, Yazd University, Yazd, Iran.
S.A. Shahzadeh Fazeli |
Department of Computer Science, Yazd University, Yazd, Iran.
E. Abbasi |
Department of Computer Science, Yazd University, Yazd, Iran.
F. Kaveh-Yazdy |
Researcher at Oncober, Basel, Switzerland.
نشانی اینترنتی
https://ijnao.um.ac.ir/article_46247_3b9bd9058b1f2bea07ae60a1efe09b88.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات