این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Iranian Journal of Blood and Cancer
، جلد ۱۷، شماره ۱، صفحات ۴۷-۶۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Exploring the Intersection of Artificial Intelligence and Oral Cancer: Diagnostic Advances, Genetic Insights, and Precision Medicine
چکیده انگلیسی مقاله
Background:
Oral cancer poses a serious global health challenge due to its high morbidity and mortality rates, largely stemming from late-stage diagnosis and limited treatment success. Recent technological advances, particularly in artificial intelligence (AI), have opened new avenues for early detection and personalized treatment approaches. Objectives: This review aims to explore the role of AI, including machine learning (ML) and deep learning (DL), in the diagnosis, prognosis, and management of oral cancer. It also examines the systemic effects of oral cancer, underlying genetic and hormonal influences, and the impact of oxidative stress and chronic inflammation on disease progression.
Methodology:
A systematic literature review was conducted covering publications from 1997 to 2024, using PubMed, Scopus, and the Cochrane Library. Studies involving AI, ML, and DL in oral cancer detection and treatment were selected based on predefined inclusion and exclusion criteria. Bibliometric and trend analyses were also performed to assess global research output and collaborative networks.
Results:
AI techniques such as convolutional neural networks and support vector machines have demonstrated significant utility in early detection, histopathological analysis, and survival prediction. The review also highlights key genetic mutations (e.g., TP53, CDKN2A) and hormonal imbalances (e.g., estrogen, androgen receptors) linked to oral cancer pathogenesis. Furthermore, systemic involvement of organs like the liver, brain, and bone is discussed. Bibliometric data indicate increasing global collaboration and the emergence of AI as a dominant research focus in oral oncology.
Conclusion:
AI-based diagnostic tools and predictive models offer promising pathways for early detection and personalized treatment in oral cancer. Understanding the molecular, systemic, and epidemiological dimensions of the disease, alongside leveraging computational advancements, can significantly enhance patient outcomes and support the development of precision medicine in oral oncology.
کلیدواژههای انگلیسی مقاله
Oral Cancer, Artificial Intelligence, Machine Learning, Deep Learning, Convolutional Neural Networks, Personalized Medicine
نویسندگان مقاله
| Rakhi Issrani
Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia.
| Hafiz Muhammad Zeeshan
Department of Computer Science, Superior University, Lahore, Pakistan.
| Nosheen Qamar
Department of Software Engineering, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| Abid Iqbal
Central Library, Prince Sultan University, Rafha Street, Riyadh, Kingdom of Saudi Arabia
نشانی اینترنتی
http://ijbc.ir/browse.php?a_code=A-10-1249-3&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
AI in Medicine
نوع مقاله منتشر شده
مقاله مروری
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات