این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
International Journal of Engineering
، جلد ۳۹، شماره ۱، صفحات ۱-۱۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Comparative Analysis of Image Segmentation Methods in Power Line Monitoring Systems
چکیده انگلیسی مقاله
This study presents a comparative study of image segmentation methods for power line monitoring using unmanned aerial vehicle (UAV) imagery. The study investigates whether a hybrid segmentation pipeline—combining classical image processing and deep learning—can enhance defect detection under challenging conditions. Three traditional methods (Otsu thresholding, Canny/Sobel edge detection, and k-means clustering) and three deep learning models (UNet, DeepLabv3, Mask R-CNN) were evaluated on a dataset of annotated UAV images, including real and synthetically augmented scenes with lighting, noise, and weather variations. Performance was measured using Intersection over :union: (IoU), Pixel Accuracy, and processing time.Traditional methods demonstrated fast inference (0.2-0.4) but limited accuracy (IoU 0.47–0.58; Accuracy 72.5 –82%). Deep learning models significantly outperformed them: UNet achieved 0.85 IoU and 94% accuracy; DeepLabv3 reached 0.88 IoU and 96%; and Mask R-CNN led with 0.90 IoU and 97% accuracy, though at 1.2 seconds per image. The proposed hybrid method combines classical preprocessing for region-of-interest extraction with Mask R-CNN segmentation, achieving 0.89 IoU, 96.5% accuracy, and reduced processing time (0.75 s/image), improving speed by 30% with minimal accuracy loss. Robustness tests showed deep learning and hybrid methods degraded less than 6% under noise, compared to 20% for traditional methods. The results demonstrate that hybrid segmentation provides a practical balance between accuracy and efficiency, suitable for real-time monitoring on resource-limited platforms.
کلیدواژههای انگلیسی مقاله
Image Segmentation,Power Line Monitoring,Deep Learning,Automated Systems,Segmentation Accuracy,defect detection
نویسندگان مقاله
T. F. Tulyakov |
Department of System Analysis and Management of Empress Catherine II Saint Petersburg Mining University Saint Petersburg, Russia
O. V. Afanaseva |
Department of System Analysis and Management of Empress Catherine II Saint Petersburg Mining University Saint Petersburg, Russia
نشانی اینترنتی
https://www.ije.ir/article_218639_e16cfa7fd0e631ac6e2db2b92963c59c.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات