این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 27 آذر 1404
Journal of Health Management and Informatics
، جلد ۱۲، شماره ۱، صفحات ۴۱-۵۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
DBCD-MIT: A Dynamic model for Breast Cancer Detection using Multi Inputs Thermograms
چکیده انگلیسی مقاله
Introduction: Breast cancer mortality rates could be greatly reduced with early detection. In the past decade, thermal imaging has been introduced as a way to detect this type of cancer. Although non-invasive, painless, and low-cost, the images resulting from this method require machine learning methods for analysis.
Methods: It is common for artificial intelligence systems to analyze thermograms based on a single input of thermography images, or to feed thermograms from different views to a single input detection model, without any processing to extract dependencies and remove redundancies. Using multi-input thermography images in different views correlated with effective correlated information, this article presents a method for detection of breast cancer. To estimate dependencies between thermograms in parallel with remove redundancy, filters are used that are dynamically and separately made for different views.
Results: Finally, fusing the information based on their effectiveness in improving the performance of the deep neural network may increase the accuracy of the proposed method in diagnosing the occurrence of breast cancer. In comparison with existing methods, the proposed mechanism can significantly increase breast cancer diagnosis. Experimental results showed that the proposed procedure improved sensitivity and specificity by 1-14 percent and 1-25 percent, respectively, compared to either deep learning or handcrafted approaches.
Conclusion: In view of the fact that thermographic images are usually taken from multiple views and the fact that dynamic filters enhance the information extracted from different views, the module presented in this article is an appropriate component for thermogram-based breast cancer classifiers.
کلیدواژههای انگلیسی مقاله
Thermography,Breast cancer,Deep Learning,Diverse perspectives,Adaptive filtering
نویسندگان مقاله
Mahsa Ensafi |
Faculty of Engineering and Technology, Alzahra University, Tehran, Iran
Mohammad Reza Keyvanpour |
Faculty of Engineering and Technology, Alzahra University, Tehran, Iran
Seyed Vahab Shojaedini |
Department of Biomedical Engineering, Iranian Research Organization for Science and Technology, Tehran, Iran
نشانی اینترنتی
https://jhmi.sums.ac.ir/article_50873_90c0b93064bd1938408d465e45ece76e.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات