این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 3 دی 1404
International Journal of Engineering
، جلد ۳۹، شماره ۵، صفحات ۱۰۴۷-۱۰۶۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Physics-Informed Neural Networks Techniques for Analyzing Forced Vibrations of Simply Supported Beams Featuring Variable Cross-Sections
چکیده انگلیسی مقاله
This research explores the forced vibrations of isotropic beams with variable cross-sections, modeled by the Euler-Bernoulli beam theory. Using Hamilton's principle, the governing partial differential equations are derived, and the complex vibrational behaviors were analyzed. By introducing physics-informed neural networks (PINNs) as an innovative, mesh-free solution technique, the study highlights their ability to provide rapid and precise results by integrating physical laws directly into the machine learning framework. Compared to traditional methods like finite element (FEM) or finite difference schemes, PINNs significantly streamline the computational process by eliminating the need for mesh generation, which simplifies implementation and reduces computational effort, validation with the 6th-order Galerkin method and FEM confirms the high accuracy and efficiency of the proposed approach for analyzing vibrations in beams with varying cross-sections. Overall, this work enhances the application of PINNs in vibration assessment and offers valuable insights for optimizing design and performance across diverse engineering domains, including structural and mechanical systems.
کلیدواژههای انگلیسی مقاله
free and forced vibration,Isotropic beam,variable cross section,Physics-informed Neural Networks,Galerkin method
نویسندگان مقاله
S. M. Sahebdad |
Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
M. Eftekhari |
Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
M. Eftekhari |
Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
نشانی اینترنتی
https://www.ije.ir/article_222605_fbba38f306d789ab016a6301ef1ca10a.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات