این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مدیریت فناوری اطلاعات، جلد ۱۷، شماره Special Issue، صفحات ۱۶-۳۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Hybrid EEG-Based Eye State Classification Using LSTM, Neural Networks, and Multivariate Analysis
چکیده انگلیسی مقاله This paper focuses on a new hybrid machine learning model for classifying eye states from EEG signals by integrating traditional techniques with deep learning methods. Our Hybrid LSTM-KNN architecture employs KNN for classification and uses LSTM networks to extract features temporally. In addition, we perform extensive feature engineering, including statistical Z-test and IQR filtering, dimensionality reduction using PCA, and multivariate analysis to further model the performance. Moreover, an SVM-based unsupervised clustering approach is proposed to partition the EEG feature space, followed by ensemble learning in each cluster to improve accuracy and robustness. Using the EEG Eye State Dataset for the first assessment, the Hybrid LSTM-KNN model recorded an accuracy of 87.2% without PCA. Further improvements through statistical filtering outperformed initial expectations, achieving a 6% rise in performance to 89.1% after outlier removal, 89.1% with Z-test (σ = 3), and 88.3% with IQR (1.5x). After applying PCA along with ensemble learning post clustering, the final model exceeded expectations with an accuracy and F1 score of 96.8%, surpassing Ensemble Cluster-KNN and traditional models based on Ensemble Cluster-KNN, Logistic Regression, SVM, and Random Forest. The outcome demonstrates the robustness and noise-resilience of the model’s performance in practical real-time brain-computer interface and cognitive monitoring systems.
کلیدواژه‌های انگلیسی مقاله Machine learning,Ensemble classifiers,Feature Selection,SVM,LSTM

نویسندگان مقاله Kaku Riya Dharmendra |
Ph.D., Department of Computer Engineering, Marwadi University, Rajkot, Gujarat-360003.

Deepak Kumar Verma |
Department of Computer Engineering, Marwadi University, Rajkot, Gujarat- 360003.

Satvik Vats |
Department of Computer Science and Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India- 273010.


نشانی اینترنتی https://jitm.ut.ac.ir/article_102919_c11695124542a857ed3aef392dd6994c.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات