این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
مدیریت فناوری اطلاعات
، جلد ۱۷، شماره Special Issue، صفحات ۱۳۰-۱۵۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Generative AI-Driven Hyper Personalized Wearable Healthcare Devices: A New Paradigm for Adaptive Health Monitoring
چکیده انگلیسی مقاله
This study aims to present a novel generative AI-driven system for hyper-personalized health monitoring. Dynamic data processing, predictive modeling, and flexible learning improve real-time health evaluations. By combining weighted feature aggregation, iterative least squares estimation, and selective feature extraction, the suggested strategy makes predictions that are more accurate while using less computer power. Abnormality detection methods like adaptive thresholding and Kalman filtering provide accurate health monitoring. Attention, gradient-based optimization, and sequence learning improve health trend forecasts as the model improves. Generative AI-driven wearables outperform conventional and AI-based alternatives in many key performance tests. These evaluations include prediction accuracy (94%), real-time monitoring efficiency (93%), adaptability (92%), data integration quality (95%), and system reaction time (90 ms). These devices are safer (96%), have longer battery life (32 hours), and are simpler, more comfortable, and scalable. The results suggest that creative AI can transform personal healthcare into something more adaptable, safe, and affordable. Generative AI-powered smart gadgets are the most sophisticated means to monitor health in real time and deliver individualized, data-driven medical treatment. Future research will concentrate on improving prediction models and developing AI-driven modification approaches to make them more effective in additional healthcare scenarios.
کلیدواژههای انگلیسی مقاله
Adaptive learning,Anomaly detection,Data Integration,generative AI,Health monitoring,Personalized healthcare
نویسندگان مقاله
Ramgopal Kashyap |
Department of Information Technology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India.
Abhishek Jain |
Department of Information Technology, Guru Ghasidas University (A Central University), Bilaspur (CG India).
Suhel Ahamad |
Department of Information Technology, Guru Ghasidas University (A Central University), Bilaspur (CG India).
Aradhana Soni Soni |
Department of Information Technology, Guru Ghasidas University (A Central University), Bilaspur (CG India).
Nishant Behar |
Department of Computer Science and Engineering, Guru Ghasidas University (A Central University), Bilaspur (CG India).
نشانی اینترنتی
https://jitm.ut.ac.ir/article_102925_5b5ee9e7c0ff2c5a68d954075d6b4003.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات