این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Optimaization in Civil Engineering، جلد ۱۵، شماره ۳، صفحات ۳۱۷-۳۳۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی GENERATIVE ARTIFICIAL INTELLIGENCE IN STRUCTURAL OPTIMIZATION: OPPORTUNITIES, CHALLENGES, AND FUTURE DIRECTIONS
چکیده انگلیسی مقاله The emergence of Generative Artificial Intelligence (GenAI) presents new possibilities for transforming structural optimization processes in civil and structural engineering. Unlike traditional AI models focused on prediction or classification, GenAI models, such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Diffusion Models, and Large Language Models (LLMs), enable the generation of novel structural designs by learning complex patterns within design-performance data. This paper provides a comprehensive review of how GenAI can support tasks such as design generation, inverse design, data augmentation for surrogate modeling, and multi-objective trade-off exploration. It also examines key challenges, including constraint integration, model interpretability, and data scarcity. By evaluating recent applications and proposing hybrid frameworks that blend generative modeling with domain knowledge and optimization strategies, this study outlines a research roadmap for the responsible and effective use of GenAI in structural optimization. The findings emphasize the need for interdisciplinary collaboration to translate GenAI’s creative potential into physically valid, structurally sound, and engineering-relevant solutions.
کلیدواژه‌های انگلیسی مقاله Generative Artificial Intelligence, Structural Optimization, Surrogate Modeling, Variational Autoencoder, Generative Adversarial Network, Diffusion Models, Large Language Models

نویسندگان مقاله | S. Talatahari
Data Science Institute, Faculty of Engineering & Information Technology, University of Technology Sydney, 2007 Ultimo, Australia


| B. Nouhi
Data Science Institute, Faculty of Engineering & Information Technology, University of Technology Sydney, 2007 Ultimo, Australia



نشانی اینترنتی http://ijoce.iust.ac.ir/browse.php?a_code=A-10-6463-30&slc_lang=en&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده Optimal design
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات