این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 20 آذر 1404
Journal of Applied Fluid Mechanics
، جلد ۱۸، شماره ۱۱، صفحات ۲۸۵۲-۲۸۷۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Multi-objective Optimization of Single-stage High-flow Centrifugal Blower Based on Sparrow Search Algorithm-back Propagation Neural Network and Non-dominated Sorting Genetic Algorithm -Ⅱ
چکیده انگلیسی مقاله
In this paper, the aerodynamic performance of the single-stage high-flow centrifugal blower is enhanced and optimized through multi-objective optimization by modifying the geometry parameters of the impeller. Seven design variables, which define the angle distribution of the impeller, are employed to parameterize its geometry. The polytropic efficiency and total pressure ratio of the centrifugal blower are selected as the two primary objective functions in the optimization process. The geometric parameters of the centrifugal impeller are sampled using the Latin Hypercube Sampling (LHS) method. Based on Computational Fluid Dynamics (CFD), the sample library comprising 60 sets of new geometric parameters for centrifugal impellers. The Sparrow Search Algorithm-Back Propagation Neural Network (SSA-BPNN) is utilized to train the sample set. Subsequently, the second-generation Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed for the optimization of the centrifugal blower. Compared with the reference centrifugal impeller, the optimized impeller demonstrates a higher average outlet relative Mach number and a lower absolute Mach number at the outlet, leading to improved flow uniformity at the impeller exit. The flow separation on the diffuser blades is diminished, and the vortex structure near the impeller shroud is reduced. The polytropic efficiency and total pressure ratio of the centrifugal blower increase by up to 2.49% and 3.18%, respectively. The operational range with high polytropic efficiency is effectively expanded for the centrifugal blowers. The aforementioned findings underscore the effectiveness of the deployed multi-objective optimization techniques in refining the performance of the centrifugal blower.
کلیدواژههای انگلیسی مقاله
Single-stage centrifugal blower,Multi-objective optimization,Sparrow Search Algorithm-Back Propagation Neural Network,Non-dominated Sorting Genetic Algorithm -Ⅱ,Computational fluid dynamics
نویسندگان مقاله
C. Lei |
Zhejiang Key Laboratory of Multiflow and Fluid Machinery,Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
J. Zhang |
Denair Energy Equipment Co., Ltd., Jiaxing, Zhejiang 314211, China
Z. Wang |
Zhejiang Key Laboratory of Multiflow and Fluid Machinery,Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
Z. Wang |
Zhejiang Key Laboratory of Multiflow and Fluid Machinery,Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
H. Yang |
Zhejiang Key Laboratory of Multiflow and Fluid Machinery,Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
W. Zhang |
Zhejiang Key Laboratory of Multiflow and Fluid Machinery,Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
Y. Wei |
Zhejiang Key Laboratory of Multiflow and Fluid Machinery,Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
نشانی اینترنتی
https://www.jafmonline.net/article_2750_96f30a8b1f9455f7278d1d76e65e0db1.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات