این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 22 آذر 1404
Journal of Mining and Environment
، جلد ۱۶، شماره ۵، صفحات ۱۶۳۷-۱۶۵۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Machine learning-based simulation of borehole grade identical twins from geophysical attributes: Comparative study of LR, GB, RF, and SVM in Kahang, Iran
چکیده انگلیسی مقاله
Estimating ore grades during the exploration phase is often time-consuming and costly due to the need for extensive drilling. Geophysical surveys, as the last indirect exploration method before drilling, offer valuable insights into subsurface mineralization. This study introduces a novel approach for simulating “identical twins” of borehole copper grade values using geophysical attributes derived from the geoelectrical method in the Kahang porphyry copper deposit, central Iran. By treating the simulated values as digital twins of actual borehole grades, we employed four machine learning algorithms—Linear Regression (LR), Gradient Boosting (GB), Random Forest (RF), and Support Vector Machine (SVM)—to model the complex relationships between geophysical inputs and copper grades. After data preprocessing with Principal Component Analysis (PCA), a refined dataset was used to train, test, and validate each model. The results demonstrate that GB yielded the highest predictive accuracy, generating grade estimates closely aligned with actual values. This identical twin modeling approach highlights the potential of machine learning to enhance early-stage mineral exploration by reducing dependence on costly drilling.
کلیدواژههای انگلیسی مقاله
Linear Regression,Gradient Boosting,Random Forest,Support Vector Machine,Identical Twin
نویسندگان مقاله
Hassanreza Ghasemi Tabar |
Department of Mining, Petroleum and Geophysics, Shahrood University of Technology,Shahrood, Iran
Sajjad Talesh Hosseini |
Faculty Member, Department of Mining and Petroleum Engineering, Imam Khomeini International University, Qazvin, Iran
Andisheh Alimoradi |
Faculty Member, Department of Mining and Petroleum Engineering, Imam Khomeini International University, Qazvin, Iran
Mahdi Fathi |
Senior Exploration Engineer, Kavoshgaran Consulting Engineers, Tehran, Iran
Maryam Sahafzadeh |
Senior Mining Engineer, SRK Consulting, Vancouver, Canada
نشانی اینترنتی
https://jme.shahroodut.ac.ir/article_3474_ac04347371e0238f4cc31b4698ed060f.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات