این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 4 دی 1404
International Journal of Transportation Engineering
، جلد ۱۳، شماره ۱، صفحات ۲۰۳۹-۲۰۵۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
How Threshold-Moving Technique May Change the Performance of Different Machine Learning Models in Crash Severity Prediction Problems
چکیده انگلیسی مقاله
To predict crash severity using Machine Learning (ML) models, dealing with imbalanced classification problems could be inevitable. Threshold-moving can address such problems. Based on a review of the literature, this technique seems to be underutilized. Also, the issue of comparing the performance of different machine learning models in the prediction of crash severity seems to be an open one. Thus, this research focuses on comparing the performance of Random Forest (RF), Logistic Regression (LR) and Naïve Bayes (NB) models by analyzing the trade-off between accuracy and recall for the minority class (both measures change as a result of thresholding). The minority class in our problem is fatal and serious injuries crashes. We use a state-wide crash database from California which contains 143310 records in order to address this issue. Various thresholds are used in the comparison, which are determined by Receiver Operating Characteristic Curves (ROC) and Precision-Recall Curves. There are three thresholds chosen for this study: 0.05, 0.10, and 0.15. Based on the results, the LR with a threshold of 0.1, the RF with 250 trees and the Bernoulli Naive Bayes (BNB) with a threshold of 0.05 are the best models. In addition, LR outperforms the rest of these three models. After threshold moving is employed, even simple models such as the LR can outperform more complicated ones like the RF in this paper, contradicting several previous studies in which the RF is found to be the best model.
کلیدواژههای انگلیسی مقاله
Crash Severity Prediction,Threshold-moving Technique,Random forest,logit,Naïve Bayes Models
نویسندگان مقاله
Alireza Mahpour |
Faculty of Civil, Water, and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
Mostafa Shafaati |
PhD, Faculty of Civil, and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
Mahmoud Saffarzadeh |
Professor, Faculty of Civil, and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
نشانی اینترنتی
http://www.ijte.ir/article_213747_00d4d6383ad7ab2513e02279f7dfe0f3.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات