این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
Journal of Agricultural Science and Technology
، جلد ۲۱، شماره ۲، صفحات ۳۰۹-۳۲۲
عنوان فارسی
پیشبینی و بهینهسازی ویژگیهای بیودیزل ماهی با استفاده از خواص دیالکتریک
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Prediction and Optimization of Fish Biodiesel Characteristics Using Permittivity Properties
چکیده انگلیسی مقاله
The purpose of this research was to predict and optimize the fish biodiesel characteristics using its permittivity properties. The parameters of biodiesel permittivity properties such as έ, dielectric constant, and ε″, loss factor at microwave frequencies of 434, 915, and 2,450 MHz, were used as input variables. The fish biodiesel characteristics, as Fatty Acid Methyl Ester (FAME) content and flash point at three different levels of reaction time 3, 9, and 27 min and catalyst concentrations 1, 1.5, and 2% w w
oil
-1
, were selected as output parameters for the models. Linear Regression (LR), the Multi-Layer Perceptron (MLP), and the Radial Basis Function (RBF) as the methods of Artificial Neural Networks (ANN), and the response surface methodology were compared for prediction and optimization of FAME content and flash point. A comparison of the results showed that the RBF recorded higher coefficient of determination at frequency of 2,450 MHz as 0.999 and 0.988 and lower root mean square error as 0.009 and 0.023 for FAME content and flash point, respectively. The optimum condition was obtained using RSM by FAME content of 89.88% and flash point of 152.7°C with desirability of 0.998.
کلیدواژههای انگلیسی مقاله
Keywords Permittivity properties,Prediction,FAME content,Optimization,RSM
نویسندگان مقاله
M. Zarein |
Department of Mechanical and Biosystems Engineering, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
M. H. Khoshtaghaza |
Department of Mechanical and Biosystems Engineering, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
B. Ghobadian |
Department of Mechanical and Biosystems Engineering, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
H. Ameri Mahabadi |
Department of Electrical Engineering, University of Malaya (UM), Kuala Lumpur, Malaysia
نشانی اینترنتی
https://jast.modares.ac.ir/article_16267_2a50f1639f5947bf6d7dd0fb14908089.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات