این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 20 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۶، شماره ۱۱، صفحات ۱۲۳-۱۳۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Integrated high frequency RF circuit design using deep reinforcement learning via proximity policy optimization method
چکیده انگلیسی مقاله
The automatic design of analog circuits is a challenging task due to the high complexity of the design, which is caused by the search space and the sometimes conflicting parameters. In the article, a trial-and-error-based approach that combines reinforcement learning and deep neural networks is used to determine the values of circuit elements have been used. In methods based on reinforcement learning, the agent tries to act like an expert designer and maybe better than that by trial and error and using the information he gets from the environment. In this article, one of the latest methods of deep reinforcement learning called approximate policy optimization (PPO) is used. To show the efficiency of the above method, a cascaded LNA circuit is considered. And the voltages are determined by the learning agent to optimize the circuit design requirements such as gain, noise figure and power consumption. To train the learning agent in the reward function, two categories of adverbs have been included in such a way that the main goal is to optimize the gain and noise figure and the secondary goal is to focus on other requirements such as power consumption. The environment which is the amplifier circuit is simulated in the Hspice software in 0.18 micrometer technology from TSMC company at the frequency of 5.7 GHz and the learning agent is also defined in the MATLAB environment which has been able to design the values of the circuit elements by interacting with the environment.
کلیدواژههای انگلیسی مقاله
integrated circuit design,RF,deep reinforcement learning,PPO,LNA
نویسندگان مقاله
Ali Khakshoor Shandiz |
Faculty of Electrical Engineering and Medical Engineering, Sajjad University, Mashhad, Iran
Abbas Golmakani |
Faculty of Electrical Engineering and Medical Engineering, Sajjad University, Mashhad, Iran
Amin Noori |
Faculty of Electrical Engineering and Medical Engineering, Sajjad University, Mashhad, Iran
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_9952_0f177aa9cdf245e14a36d5bf9ef9be7c.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات