این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Materials Forming، جلد ۱۲، شماره ۳، صفحات ۴-۱۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Predicting Maximum Process Temperature in Cortical Bone Milling: An XGBoost Approach with Sensitivity Insights
چکیده انگلیسی مقاله Bone milling, a crucial biomechanical process in medical engineering, finds applications in dentistry, orthopedic surgery, and bone-related treatments. The utilization of computer numerical control (CNC) surgical mills has significantly enhanced this process, but it comes with challenges such as elevated temperatures that induce thermal necrosis in bone tissue. This study examines key inputs, including tool diameter, feed rate, rotational speed, and cutting depth, conducting a detailed experiment to predict maximum process temperature using the XGBoost machine learning algorithm. The XGBoost model consistently demonstrated exceptional predictive accuracy, yielding high determination coefficients of 0.99 in training and 0.94 in testing. Accurate predictions were evident through close alignment between model-predicted and actual values, with mean absolute percentage error (MAPE) values of 0.33% and 3.38% for training and testing, respectively. Rotational speed emerged as a critical factor, indicating a key point where temperature trends shift. Higher speeds are correlated with lower temperatures due to enhanced chip removal and reduced bone heat conductivity. Elevated feed rates were associated with increased bone temperature, emphasizing the intricate interplay between frictional forces and heat production. Additionally, often-overlooked factors like cutting depth and tool diameter substantially influenced process temperature, impacting surgery recovery times. Sobol sensitivity analysis identified cutting depth, rotational speed, tool diameter, and feed rate as primary factors influencing maximum process temperature fluctuations, with effectiveness percentages of 46.7%, 36%, 13.2%, and 4.1%, respectively. This comprehensive analysis sheds light on optimizing bone milling processes and mitigating thermal risks in medical applications.
کلیدواژه‌های انگلیسی مقاله bone milling,process temperature,XGBoost,Optimization,biomedical engineering

نویسندگان مقاله V. Tahmasbi |
Department of Mechanical Engineering, Arak University of Technology, Arak, Iran

M. Qasemi |
Department of Mechanical Engineering, Arak University of Technology, Arak, Iran

A.H. Rabiee |
Department of Mechanical Engineering, Arak University of Technology, Arak, Iran


نشانی اینترنتی https://ijmf.shirazu.ac.ir/article_8186_1bbe902a6ba7e0947ed129116233fce8.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات