این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Industrial and Systems Engineering، جلد ۱۷، شماره Special issue: ۲۰th Iranian International Industrial Engineering Conference، صفحات ۳۵-۴۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی An IoT-Based Multi-Sensor Data Fusion Framework for Predictive Fleet Failure Using a Hybrid Survival Analysis and Machine Learning Approach
چکیده انگلیسی مقاله Cost optimization and increasing fleet reliability are among the main challenges in urban public transportation management. In this research, temporal failure patterns of critical bus components in various cities of Iran have been modeled and evaluated through analysis of real data collected from intelligent urban fleet systems. Comparative analysis of analytical methods showed that the Decision Forest model with an average accuracy (F1-score) of 89% (compared to Log-rank test 42.3%, stratified Cox 64%, and Decision Tree 85%) demonstrates superior performance in predicting component failures. Results indicate that environmental factors, operation, and utilization methods have significant effects on component lifespan. Accordingly, a predictive maintenance planning framework has been presented which, based on simulation results, leads to a 41% reduction in maintenance costs and a 65% decrease in fleet downtime.
کلیدواژه‌های انگلیسی مقاله Component Survival Analysis,Fleet Management System,Internet of Things in Transportation,preventive maintenance,Machine Learning

نویسندگان مقاله Aryan Akbarirad |
Master of Industrial Engineering, Faculty of Management and Industrial Engineering, Malek-Ashtar University of Technology, Tehran, Iran

Armin Akbarirad |
Master of Industrial Engineering, Faculty of Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran


نشانی اینترنتی https://www.jise.ir/article_232688_43b10790536bf5916d1bddb6b5f776f8.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات