این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Engineering، جلد ۳۲، شماره ۶، صفحات ۸۷۷-۸۸۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
چکیده انگلیسی مقاله In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method in the signal separation, using the morphological difference of the components in the automatic vibration signal, different sparse dictionaries were constructed to separate the components, eliminates the noise components and extracted the effective fault characteristic component, the extracted impact components are decomposed by EEMD and the energy feature of each IMF component is calculated as the fault features, then put the fault features into SVM (Support Vector Machine) and identify the faults. Through the construction simulation example and the typical fault simulation test of automatic machine, it showed that the morphological component analysis method had better noise reduction and signal separation effect. Compared with the traditional EEMD method, the feature extraction method based on the MCA-EEMD can distinguish automaton fault types more effectively.
کلیدواژه‌های انگلیسی مقاله Automaton, Fault Diagnosis, Vibration Signal, Morphological Component Analysis, Ensemble Empirical Mode Decomposition

نویسندگان مقاله F. Wang |
Department of Artillery Engineering, Army Engineering University, He Ping Road, Shijiazhuang China

L. Fang |
Department of Artillery Engineering, Army Engineering University, He Ping Road, Shijiazhuang China


نشانی اینترنتی http://www.ije.ir/article_89321_87a940571301d495e7ff0face747d59f.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات