این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
پژوهش های نوین در تصمیم گیری، جلد ۱، شماره ۲، صفحات ۵۳-۷۶

عنوان فارسی طراحی سیستم توصیه گر به‌منظور بهینه‌سازی و مدیریت تسهیلات بانکی بر مبنای الگوریتم‌های خوشه‌بندی و طبقه‌بندی تسهیلات
چکیده فارسی مقاله تسهیلات بانکی به‌عنوان یکی از پراهمیت ترین کارکرد بانک ها از اهمیت بالایی برخوردار است. اهمیت شناسایی مشتریان تسهیلاتی اگر بیشتر از مشتریانی سپرده گزار نباشد به هیچ وجه کمتر نخواهد بود. در پژوهش‌های صورت گرفته، اهمیت این مشتریان بطور نسبی کمتر موردتوجه قرار گرفته است. هدف اصلی پژوهش حاضر، کاستن از مشکلات ارائه تسهیلات مناسب به مشتریان و طراحی سیستم توصیه گر تسهیلات بانکی با استفاده از داده های قبلی مربوط به تسهیلات ثبت شده در یک بانک منتخب و بزرگ کشور می باشد. راهکار ارائه شده، با دریافت داده های تسهیلات و اطلاعات حساب مشتری، گروه های مشتریان را در طی فرآیند آموزش و اعتبارسنجی، فراگرفته و بر مبنای آن، امکان پیش بینی شرایط مشتری برای دریافت تسهیلات آتی را فراهم می نماید. به منظور طراحی راهکار توصیه گر، روش های داده کاوی مناسب به همراه رویکرد اعتبارسنجی متناسب با هر روش انتخاب گردید و سیستم نهایی با خطای اندک، جهت گیری مناسب بانک نسبت به متقاضیان دریافت تسهیلات را معین نموده است که به تصمیم گیری مدیران برای ارائه دقیق تر تسهیلات، یاری خواهد رساند. این سیستم به بانک ها کمک می کند تا با شناسایی انواع مشتریان تسهیلاتی خود، تصمیمات مرتبط با هر گروه را به منظور ایجاد حداکثر سود و کاهش هزینه های وصول مطالبات اتخاذ نمایند و رویکرد متناسبی را برای هر مشتری در پیش گیرند. در نهایت، سیستم به سرپرستان بانک نیز ارائه گردید و بازخوردهای مطلوبی برای بهبود و ارتقاء راهکار دریافت شد.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Designing a Recommender System for Optimizing and Managing Bank Facilities through the Utilization of Clustering and Classification Algorithms
چکیده انگلیسی مقاله Bank facilities, as one of the most important functions of banks, are very important to the survival of banks. The importance of identifying facility consumers is more than depositor customers. In previous studies, the importance of such customers has not been well considered. This study aims at designing recommender systems for predicting the customer behavior in receiving facilities, using clustering and classification algorithms. The designed system helps banks to identify types of facility demanding costumers, and to make decisions related to each customer cluster in order to make maximum profits and reduce the cost related to loans and receivables. The system accurately predicts each customer's cluster and also forecasts account balance of each customer group according to the current data set. Based on Analyses carried out on the clusters and related data sets of clients, is the recommender system is provided for to branch users. In order to design the recommender system, clustering and classification outputs were also deeply validated. The margin of error was very low and therefore, data mining outputs were verified and used to develop the final system as well as a user interface for the final utilization of recommender system which was presented and validated by the supervisors of bank. Supervisors also provided some suggestions for improving the final solution.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله بابک سهرابی |
استاد مدیریت فناوری اطلاعات، دانشکده مدیریت، دانشگاه تهران، تهران، ایران
سازمان اصلی تایید شده: دانشگاه تهران (Tehran university)

ایمان رییسی وانانی | raeesi vanani
استادیار مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران
سازمان اصلی تایید شده: دانشگاه علامه طباطبایی (Allameh tabatabaii university)

فایزه زارع میرک آباد | zare mirakabad
کارشناس ارشد، مدیریت فناوری اطلاعات، دانشکده مدیریت، دانشگاه تهران، تهران، ایران
سازمان اصلی تایید شده: دانشگاه تهران (Tehran university)


نشانی اینترنتی http://journal.saim.ir/article_21125_06728ba4fc26571018fd745e55f6747a.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1432/article-1432-388125.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات