این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 29 آذر 1404
مهندسی بیوسیستم ایران
، جلد ۴۸، شماره ۱، صفحات ۶۹-۵۵
عنوان فارسی
مقایسه الگوریتمهای تشخیص نقاط ویژه تصاویر در فضاهای رنگ مختلف به منظور تهیه نقشه سه بعدی درختان
چکیده فارسی مقاله
عملیات کشاورزی در باغات مانند سمپاشی، آبیاری و ... در زمینه کشاورزی دقیق و رباتیک کشاورزی وابستگی زیادی به شکل تاج درخت و ساختار آن دارد. بنابراین داشتن مدل سهبعدی و نقشه عمق درختان میتواند مفید باشد. یکی از روشهای ایجاد مدل سهبعدی، استفاده از روش بینایی استریو است. مهمترین مرحله در این روش، تعیین نقاط متناظر است. برای انجام این کار ابتدا باید نقاط ویژه در هر تصویر شناسایی شوند. الگوریتمهای مختلفی بدین منظور نوشته شده است. در این تحقیق شش الگوریتم Harris-Stephens، Minimum eigenvalue، MSER، FAST، SURF و BRISK در فضاها و مولفه های RGB، G، HSV، H، YCbCr، Y، NTSC، Lab و a بررسی و مقایسه شد. نتایج نشان داد که الگوریتم SURF بهترین عملکرد را داشت. نقاط ویژهای که این الگوریتم تشخیص داد در اکثر فضاها ثابت بود که نشان از پایداری این الگوریتم در فضاهای مختلف دارد. بعد از الگوریتم SURF بهترین عملکرد را الگوریتم MSER داشت. این الگوریتم محصولات درخت را به عنوان نقاط ویژه تشخیص داد. اگر چه تعداد این نقاط کم است اما درصورتی که نتوان نقاط گوشه را در دو تصویر با هم مطابقت داد، از این نقاط میتوان به عنوان نقاط مشترک جهت تطابق استفاده کرد. الگوریتمها در فضاها و مولفههای HSV، H، YCbCr و NTSC بهترین عملکرد را داشتند و در فضای RGB و Y از نظر تعداد نقاط ویژه تشخیص داده شده پایدارتر عمل کردند.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Comparison of feature points detection algorithms in different color spaces in order to create 3D map of trees
چکیده انگلیسی مقاله
One method of creating a 3D model is stereo vision. The most important problem in this method is the corresponding points. In this study, 6 algorithms included Harris-Stephens, Minimum eigenvalue, MSER, FAST, SURF and BRISK were compared in RGB, G, HSV, H, YCbCr, Y, NTSC, Lab and a spaces. The results showed that SURF algorithm had the best performance. Detected feature points by this algorithm were fix in most spaces, so this algorithm is stable in different spaces. After SURF algorithm, MSER algorithm had the best performance. This algorithm detected tree crops as feature points. Although the number of these points is low, but if cannot be matched corner points in two images together, these points can be used to match as common points (keypoints). Algorithms had the best performance in the HSV, H, YCbCr and NTSC spaces and they were stable in RGB and Y spaces in terms of the number of detected feature points.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
ایوب جعفری ملک آبادی | jafari malekabadi
دانشجوی دکتری، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد
سازمان اصلی تایید شده
: دانشگاه فردوسی (Ferdowsi university)
مهدی خجسته پور |
دانشیار گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد
سازمان اصلی تایید شده
: دانشگاه فردوسی (Ferdowsi university)
باقر عمادی |
دانشیار گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد
سازمان اصلی تایید شده
: دانشگاه فردوسی (Ferdowsi university)
نشانی اینترنتی
http://ijbse.ut.ac.ir/article_61561_c7b074415a14d4779cadbda665ce1621.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1228/article-1228-398965.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات