این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Ecopersia، جلد ۵، شماره ۲، صفحات ۱۷۷۱-۱۷۸۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Digital Mapping of Topsoil Salinity Using Remote Sensing Indices in Agh-Ghala Plain, Iran
چکیده انگلیسی مقاله Background: Soil salinization is a world-wide land degradation process in arid and semi-arid regions that leads to sever economic and social consequences. Materials and Methods: We analyzed soil salinity by two statistical linear (multiple linear regression) and non-linear (artificial neural network) models using Landsat OLI data in Agh-Ghala plain located in north east of Iran. In situ soil electrical conductivity (EC) of 156 topsoil samples (depth of 0-15cm) was also determined. A Pearson correlation between 26 spectral indices derived from Landsat OLI data and in situ measured ECs was used to apply efficient indices in assessing soil salinity. The best correlated indices such as blue, green and red bands, intensity indices (Int1, Int2), soil salinity indices (Si1, Si2, Si3, Si11, Aster-Si), vegetation Indices (NDVI, DVI, RVI, SAVI), greenness and wetness indices were used to develop two models. Results: Comparison between two estimation models showed that the performance of ANN model (R2=0.964 and RMSE=2.237) was more reliable than that of MLR model (R2=0.506 and RMSE=9.674) in monitoring and predicting soil salinity. Out of the total area, 66% and 55.8% was identified as non-saline, slightly and very slightly saline for ANN and MLR models, respectively. Conclusions: This shows that remote sensing data can be effectively used to model and map spatial variations of soil salinity. 
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله سیده زهره موسوی | seyedeh zohreh
ph.d student of watershed engineering, faculty of natural resources, sari university of agricultural science and natural resources, sari, iran

محمود حبیب نژاد |
professor of watershed engineering, faculty of natural resources, sari university of agricultural science and natural resources, sari, iran

عطااله کاویان |
associate professor of watershed engineering, faculty of natural resources, sari university of agricultural science and natural resources, sari, iran

کریم سلیمانی |
professor of watershed engineering, faculty of natural resources, sari university of agricultural science and natural resources, sari, iran

فرهاد خرمالی |
professor of pedology, faculty of water and soil engineering, gorgan university of agricultural science and natural resources, gorgan, iran
سازمان اصلی تایید شده: دانشگاه گلستان (Golestan university)


نشانی اینترنتی http://ecopersia.modares.ac.ir/article_17042_61149e87f4e0c425c5d4e862fe19a4bd.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/391/article-391-413499.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات