این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
رایانش نرم و فناوری اطلاعات
، جلد ۵، شماره ۱، صفحات ۶۲-۰
عنوان فارسی
Using Curve Fitting in Error Correcting Output Codes
چکیده فارسی مقاله
The Error Correcting Output Codes (ECOC) represent any number of the binary classifiers to model the multiclass problems successfully. In this paper, we have used Curve Fitting as a binary classifier in ECOC algorithm to solve multiclass classification problems. Curve Fitting is a classifier based on a nonlinear decision boundary that separates two pattern classes by the curves of the best fit, and arriving at optimal boundary points between two classes. Since we need a coding and a decoding strategy to design an ECOC system, this paper gives five coding and eight decoding strategies of ECOC and compares the results of Curve Fitting with Adaboost classification and Nearest Mean Classifier (NMC). This evaluation has been performed on different data sets of UCI machine learning repository. The results indicate that One-versus-one, ECOC-ONE coding and LAP, BDEN decoding having the best results in contrast with another coding and decoding strategies and Curve Fitting is a good base classifier in ECOC, also it is comparable with the other ECOC approaches.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Using Curve Fitting in Error Correcting Output Codes
چکیده انگلیسی مقاله
The Error Correcting Output Codes (ECOC) represent any number of the binary classifiers to model the multiclass problems successfully. In this paper, we have used Curve Fitting as a binary classifier in ECOC algorithm to solve multiclass classification problems. Curve Fitting is a classifier based on a nonlinear decision boundary that separates two pattern classes by the curves of the best fit, and arriving at optimal boundary points between two classes. Since we need a coding and a decoding strategy to design an ECOC system, this paper gives five coding and eight decoding strategies of ECOC and compares the results of Curve Fitting with Adaboost classification and Nearest Mean Classifier (NMC). This evaluation has been performed on different data sets of UCI machine learning repository. The results indicate that One-versus-one, ECOC-ONE coding and LAP, BDEN decoding having the best results in contrast with another coding and decoding strategies and Curve Fitting is a good base classifier in ECOC, also it is comparable with the other ECOC approaches.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
مریم حدادی | maryam haddadi
master of artificial intelligence, computer engineering department, alzahra university, iran
سازمان اصلی تایید شده
: دانشگاه الزهرا (Alzahra university)
ملیحه احمدی | maliheh ahmadi
master of artificial intelligence, computer engineering department, alzahra university, iran
سازمان اصلی تایید شده
: دانشگاه الزهرا (Alzahra university)
محمد رضا کیوان پور | mohammad reza keyvanpour
associative professor, computer engineering department, alzahra university, iran
سازمان اصلی تایید شده
: دانشگاه الزهرا (Alzahra university)
نوشین ریاحی | noushin riahi
associative professor, computer engineering department, alzahra university, iran
سازمان اصلی تایید شده
: دانشگاه الزهرا (Alzahra university)
نشانی اینترنتی
http://jscit.nit.ac.ir/index.php/jscit/article/view/Vol.5_No.1_7
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات