این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 28 آذر 1404
مهندسی و مدیریت آبخیز
، جلد ۳، شماره ۱، صفحات ۱-۱۱
عنوان فارسی
مدل شبکه عصبی مصنوعی برای تخمین رسوبدهی حوزههای آبخیز
چکیده فارسی مقاله
امروزه رسوبدهی حوزههای آبخیز از جمله مشکلات بهرهبرداری از منابع آبهای سطحی در جهان است. با توجه به نقش و اهمیت رسوب در عمر مفید سدهای کشور، عدم توجه به اندازهگیری و محاسبه دقیق آن، باعث اتلاف سرمایههای ملی میشود. بدیهی است که دقت تخمین میزان رسوبدهی، بستگی زیادی به روشهای محاسباتی، معادلات ارائه شده و دادهها یا اطلاعات تخمین رسوب دارد. چون عوامل مختلفی در فرسایش و تولید رسوب مؤثر است و بر اساس شرایط هر حوزه ممکن است یک یا چند عامل در تشدید آن مؤثر باشد.از این رو، برای بررسی مسئله رسوبدهی هر حوزه باید عوامل مختلف مؤثر در رسوبدهی آن منطقه را شناسایی و بهطور صحیح برآورد کرد و سپس تأثیر عوامل مختلف را بر روی رسوبدهی مشخص نمود. در این تحقیق، شبکههای عصبی مصنوعی بهعنوان روشی جدید برای تخمین رسوبدهی حوزه، بهکار گرفته شده است. شبکهای با ساختار و آموزش مناسب و دادههای کافی، قادر است تأثیرات و ارتباط بین رسوب و سایر متغیرهای مؤثر در رسوبدهی را بدون استفاده از روابط اختصاصی و معادلات مربوطه فراگیرد. برای تخمین رسوبدهی زیرحوزهها، از ساختار MLP استفاده شد. پس از آموزش و آزمایش دادهها،بهترین حالت در نظر گرفته شده و سپس با روش رگرسیونهای چندمتغیره مقایسه شد. نتایج نشاندهنده بهبود قابل توجهی در محاسبه و تخمین رسوب و کارآیی روش شبکههای عصبی نسبت بهروش رگرسیونهای چند متغیره است.
کلیدواژههای فارسی مقاله
انتقال رسوب، رگرسیون چندمتغیره، ساختار MLP، منابع آب سطحی،
عنوان انگلیسی
An artificial neural network model for estimation of sediment yield
چکیده انگلیسی مقاله
Sediment yield of watersheds is considered as a problem of water resources management and operation. Considering important role of sedimentation, accurate measurement and estimation of it is important for national investment in water resources development. Accuracy of sediment yield estimation depends on the estimation methods. There are different parameters affectingt sediment yield. These parameters should be considered in simulation of sediment yield. An artificial neural network model is used for estimation of sediment yield in this research. The model with proper structure and sufficient data is trained and tested and it can recognize the relation of the parameters and sediment yield. The proper structure is found to be MLP. The result of the model is compared with a regional analysis model and it shows notable increasing of accuracy by the artificial neural network model.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
محمدابراهیم بنی حبیب | mohammad ebrahim
استادیار گروه آبیاری، پردیس ابوریحان، دانشگاه تهران
سازمان اصلی تایید شده
: دانشگاه تهران (Tehran university)
احسان امامی |
دانش آموخته گروه آبیاری، پردیس ابوریحان، دانشگاه تهران
سازمان اصلی تایید شده
: دانشگاه تهران (Tehran university)
نشانی اینترنتی
http://jwem.areo.ir/article_101781_a7f1a7fa29a2c546a75958afb5368db7.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1259/article-1259-421672.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات