این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Public Health، جلد ۴۵، شماره ۹، صفحات ۱۱۷۹-۱۱۸۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Evaluating the High Risk Groups for Suicide: A Comparison of Logistic Regression, Support Vector Machine, Decision Tree and Artificial Neural Network
چکیده انگلیسی مقاله Background: We aimed to assess the high-risk group for suicide using different classification methods includinglogistic regression (LR), decision tree (DT), artificial neural network (ANN), and support vector machine (SVM). Methods: We used the dataset of a study conducted to predict risk factors of completed suicide in Hamadan Province, the west of Iran, in 2010. To evaluate the high-risk groups for suicide, LR, SVM, DT and ANNwere performed. The applied methods were compared using sensitivity, specificity, positive predicted value, negative predicted value, accuracy and the area under curve. Cochran-Q test was implied to check differences in proportion among methods. To assess the association between the observed and predicted values, Ø coefficient, contingency coefficient, and Kendall tau-b were calculated. Results: Gender, age, and job were the most important risk factors for fatal suicide attempts in common for four methods. SVM method showed the highest accuracy 0.68 and 0.67 for training and testing sample, respectively. However, this method resulted in the highest specificity (0.67 for training and 0.68 for testing sample) and the highest sensitivity for training sample (0.85), but the lowest sensitivity for the testing sample (0.53). Cochran-Q test resulted in differences between proportions in different methods ( P < 0.001). The association of SVM predictions and observed values, Ø coefficient, contingency coefficient, and Kendall tau-b were 0.239, 0.232 and 0.239, respectively. Conclusion: SVM had the best performance to classify fatal suicide attempts comparing to DT, LR and ANN.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله پیام امینی | payam amini


حسن احمدی نیا | hasan ahmadinia


جلال پورالعجل | jalal poorolajal


محمد مقدسی امیری | mohammad moqaddasi amiri



نشانی اینترنتی http://ijph.tums.ac.ir/index.php/ijph/article/view/7869
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Original Article(s)
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات