این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مهندسی عمران مدرس، جلد ۱۷، شماره ۳، صفحات ۱۴۶-۱۵۶

عنوان فارسی روش رهایی پویا با میرایی متمرکز
چکیده فارسی مقاله در تحلیل هر نوع سازه‌ای نیاز به حل یک دستگاه معادله‌های خطی یا نا‏خطی است. روش‌های گوناگون مستقیم و تکراری برای حل چنین دستگاهی وجود دارند. در شیوه‌های تکراری دقت یافتن پاسخ‌ها قابل تعیین است و با تکرار محاسبه می‌توان خطاها را کاهش داد. یکی از فرآیندهای ساده و توانمند این دسته، فن رهایی پویا می‌باشد. شیوه‌ی رهایی پویا با افزودن نیروهای اینرسی و میرایی ساختگی، سامانه ایستا را به فضای پویا می‌برند. با انتخاب مناسب عامل‌های ساختگی، سامانه پویا به پاسخ ایستا همگرا خواهد شد. در این مقاله، نخست مروری از پژوهش‌های انجام شده برای تعیین عامل‌های رهایی پویا ارائه می‌گردد. سپس، پایه‌های ریاضی شیوه‌ی پیشنهادی می‌آید. در راهکار مزبور، همانند روش سنتی رهایی پویا عامل‌های جرم و گام زمانی وجود دارد. ولی عامل میرایی در گام‌های خاصی وارد می‌گردد تا کارمایه جنبشی را به سوی صفر ببرد و پاسخ سامانه‌ی ایستا به دست آید. با کاربرد عامل میرایی به صورت متمرکز در شمار محدودی از گام‌ها، حجم محاسبات کاهش می‌یابد. همچنین نتیجه‌های عددی در تحلیل قاب و خرپا نشانگر بهبود نرخ همگرایی است. افزون بر برتری‌های کاربردی، شیوه‌ی پیشنهادی دو راهکار متفاوت میرایی سنتی و میرایی جنبشی را در قالب یک روش ارائه می‌دهد.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Dynamic relaxation with concentrated damping
چکیده انگلیسی مقاله Solving a system of linear or non-linear equations is required to analyze any kind of structures. There are many ways to solve a system of equations. They can be classified as implicit and explicit techniques. The explicit methods eliminate round-off errors and use less memory. The dynamic relaxation method (DRM) is one of the powerful and simple explicit processes. The important point is that the DRM does not require to storage the global stiffness matrix. It just uses the residual loads vector. Utilizing the virtual masses, damping and time steps, the DRM convert a system of static equations to dynamic ones. The process is started by assuming an initial solution. The next steps are done in such a way that the residual forces are decreased. The proper value of fictitious mass and time step guarantees the convergence of the proposed DR procedure. On the other hand, the convergence rate is dependent on value of damping factor, which is calculated using the lowest eigenvalue of artificial dynamic system in the common dynamic relaxation method. It is evidence; the dynamic system oscillates when damping is zero. The convergence of DRM with zero damping factors is achieved utilizing kinetic damping or -damping. In the kinetic dynamic relaxation process, the velocities of the joints are set to zero when a fall in the level of total kinetic energy of the structure occurs. However, it is difficult to calculate the extreme point of kinetic energy. Topping suggested assuming the peak point at the mid-point of the previous time-step, when a fall down in kinetic energy is occurred. The factor  in the -damping method is time step ratio of two sequence steps. The time-step ratio can be calculated in such a way that the responses converge to exact solutions. In this paper, a comprehensive review of dynamic relaxation algorithms is presented. Of these, the popular and kinetic damping DR methods are described in detail. Then, the new dynamic relaxation algorithm is proposed. In this procedure, the artificial mass and time steps are similar to the DR methods that have been recently introduced. However, the damping factor is different with these methods. Damping factor is calculated in some specified steps. In other words, damping is zero in the most step of DR algorithm. Therefore, the total number of calculations is reduced. The concentrated damping is imposed, when the value of total kinetic energy of system is at its peak point. Utilizing the proper values of concentrated damping factors, the kinetic energy converges to zero. The presented formulation shows the relation between common and kinetic dynamic relaxation processes, too. It should be noted; the procedures of minimizing the kinetic energy of proposed method and Topping algorithm are different. The kinetic technique is required more calculations. Finally, some benchmark problems of truss and frame structures are selected. The linear and geometric nonlinear analyses are performed. The numerical results also show that the convergence rate of the new DRM increases in the majority of cases with respect to kinetic damping and also popular damping.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله سیدرضا سرافرازی | seyed reza
عضو هیات علمی دانشگاه بیرجند
سازمان اصلی تایید شده: دانشگاه بیرجند (Birjand university)

سیده فاطمه لبافی | seyedeh fatemeh
دانشجوی کارشناسی ارشد دانشگاه بیرجند
سازمان اصلی تایید شده: دانشگاه بیرجند (Birjand university)


نشانی اینترنتی http://mcej.modares.ac.ir/article_17440_cb06f9d366a9457a6bbedbf695f5b20b.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1242/article-1242-427457.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات