این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Persian Journal of Acarology، جلد ۶، شماره ۴، صفحات ۰-۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Evaluation of geostatistical method and hybrid artificial neural network with imperialist competitive algorithm for predicting distribution pattern of Tetranychus urticae (Acari: Tetranychidae) in cucumber field of Behbahan, Iran
چکیده انگلیسی مقاله In this study, the statistical methods and artificial neural network (ANN) were used to estimate the spatial distribution of Tetranychus urticae in cucumber field of Behbahan, Iran. Pest density assessments were performed following a 10 × 10 m 2 grid pattern on the field and a total of 100 sampling units on field. In both methods latitude and longitude information were used as input data and output of each methods showed number of pest. In Geostatistics methods ordinary kriging, and ANN with imperialist competitive algorithm were evaluated. Comparison of ANN and geostatistical showed that ANN capability is more than ordinary kriging method so that the ANN predicts distribution of this pest dispersion with 0.98 coefficient of determination and 0.0038 mean squares errors lower than the Geostatistical methods. In general, it can be concluded that the ANN with imperialist competitive algorithm approach with combining latitude and longitude can forecast pest density with sufficient accuracy. Our map showed that patchy pest distribution offers large potential for using site-specific pest control on this field. 
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله علیرضا شعبانی نژاد | alireza shabaninejad


بهرام تفقدی نیا | bahram tafaghodinia


نوشین زندی سوهانی | nooshin zandi sohani



نشانی اینترنتی https://biotaxa.org/pja/article/view/30295
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Article
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات