این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 5 دی 1404
تحقیقات منابع آب ایران
، جلد ۱۳، شماره ۴، صفحات ۱۷۴-۱۷۸
عنوان فارسی
ارزیابی کارایی روشهای مرسوم و رایانه ای در بازسازی سری زمانی دبی ماهانه ایستگاه های هیدرومتری
چکیده فارسی مقاله
عدم وجود آمار و اطلاعات کامل، نمیتواند مجوزی برای عدم مطالعه شرایط هیدرولوژیکی یک منطقه و پیشبینیهای درازمدت برای انجام یک پروژه آبی باشد. بنابراین پژوهشگران مختلف روشهایی از قبیل آنالیز نسبتها، فرگمنت و توماس فیرینگ را برای بازسازی دادههای ناقص دبی در ایستگاههای هیدرومتری به کار بردهاند. لذا در این پژوهش دقت روشهای مذکور با روشهای رایانهای از قبیل شبکه عصبی مصنوعی، هیبرید عصبی - موجکی و ماشین بردار پشتیبان مورد مقایسه و بررسی قرار گرفته است. نتایج نشان داد که روشهای رایانهای نسبت به سه روش دیگر از دقت بالاتری برخوردار هستند. مقایسه نتایج روشهای رایانهای نشان داد شبکه عصبی مصنوعی (98/0R^2=، 18/6 RMSE= و 476/0 SE= )، ماشین بردار پشتیبان (902/0R^2=، 074/6 RMSE= و486/0 SE=) و هیبرید عصبی- موجکی (889/0 R^2=، 96/6 RMSE= و54/0 SE=) به ترتیب در رتبههای اول تا سوم قرار دارند. اگرچه سه روش شبکه عصبی مصنوعی، ماشین بردار پشتیبان و هیبرید عصبی – موجکی تفاوت معنا داری در مقایسه با یکدیگر ندارند اما روش ماشین بردار پشتیبان با سهولت بیشتر و در زمان کمتری قادر به بازسازی بوده و از این جهت نسبت به سایر روشها ارجحیت دارد.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Evaluation of the efficiency of custom and computerized methods for reconstruction of monthly flow time series in the hydrometric stations
چکیده انگلیسی مقاله
The lack of complete data should not be the cause for disregarding the hydrological condition and the long-term forecasts for performing a hydrological project in one region. Therefore, various researchers have used different methods such as Ratio Analysis, Fragment, and Thomas-fiering for the reconstruction of incomplete flow data in hydrometric stations. So, in this study, the accuracy of these methods and computerized methods such as, artificial neural network, hybrid wavelet-neural network and support vector machine have been investigated and compared. The results showed that the computerized methods have the higher accuracy than the other three methods. Comparison amongst the computerized methods shows that the artificial neural network method (R^2=0.98,RMSE=6.18,SE=0.476), the support vector machine method (R^2=0.902,RMSE=6.074,SE=0.486) and the hybrid wavelet-neural method (R^2=0.889,RMSE=6.96,SE=0.54) ranking first, second and third, respectively. Although, these three methods of artificial neural network, hybrid wavelet-neural network and support vector machine have not significant difference in comparison with each other's, but the support vector machine constructed the data in the less time and with the more ease and hence has an advantage in comparison with the other methods.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
حامد نوذری |
استادیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان
سازمان اصلی تایید شده
: دانشگاه بوعلی سینا (Bu ali sina university)
فاطمه توکلی |
دانشجوی کارشناسی ارشد مهندسی منابع آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان
سازمان اصلی تایید شده
: دانشگاه بوعلی سینا (Bu ali sina university)
نشانی اینترنتی
http://www.iwrr.ir/article_45174_2d9ffdf0d826447d2c3209c326e38722.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/709/article-709-569548.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات