این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
پردازش علائم و داده ها، جلد ۱۴، شماره ۴، صفحات ۱۴۳-۱۵۷

عنوان فارسی مقایسه روش‌های مختلف یادگیری ماشین در خلاصه‌سازی استخراجی گفتار به گفتار فارسی بدون استفاده از رونوشت
چکیده فارسی مقاله در این مقاله، خلاصه‌سازی استخراجی گفتار با استفاده از روش‌های مختلف یادگیری ماشین مورد مطالعه قرار گرفته است. خلاصه‌سازی یک فایل گفتاری به معنای استخراج بخش‌های مهم و شاخص گفتار به‌منظور  دسترسی، جستجو، استخراج و مرورگری آسان‌تر و کم‌هزینه‌تر اطلاعات فایل‌های گفتاری است. در این مقاله، یک روش جدید خلاصه‌سازی گفتار بدون استفاده از سامانه بازشناسی خودکار گفتار ارائه شده است. الگوهای تکراری بین دو جمله گفتاری با استفاده از الگوریتم S-DTW، به‌طورمستقیم از روی سیگنال گفتار شناسایی می‌شوند. بعد از تعیین شباهت بین دو جمله و استخراج تعدادی ویژگی از هر جمله تأثیر روش‌های مختلف یادگیری ماشین، بانظارت، بی‌نظارت و نیمه‌نظارتی مورد بررسی قرار گرفته است. آزمایش‌ها برروی یک پیکره خوانده‌شده اخبار فارسی انجام شده است. نتایج نشان می‌دهد با استفاده از  ویژگی‌های مناسب، بدون استفاده از رونوشت به کارایی بالاتری نسبت به روش‌های پایه (3٪ افزایش در مقایسه با انتخاب نخستین جملات و 5٪ افزایش در مفایسه با انتخاب طولانی‌ترین جملات با استفاده از معیار ROUGE-3) می‌توان دست پیدا کرد.  
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A comparison of machine learning techniques for Persian Extractive Speech to Speech Summarization without Transcript
چکیده انگلیسی مقاله In this paper, extractive speech summarization using different machine learning algorithms was investigated. The task of Speech summarization deals with extracting important and salient segments from speech in order to access, search, extract and browse speech files easier and in a less costly manner. In this paper, a new method for speech summarization without using automatic speech recognition system (ASR) is proposed. ASR systems usually have high error rates especially in adverse acoustic environment and for low resource languages. Our goal was to answer this question: is it possible to summarize a Persian speech without ASR using less or no training data? We have proposed a method which discovers salient parts directly from speech signal by using a semi-supervised algorithm. The proposed algorithm consists of three main stages, features extraction, identifying key patterns and selecting important sentences. First we have segmented speech voices manually into sentences to eliminate sentence segmentation errors. Therefore, we could have better comparison between different summarization methods. Then we have extracted some features from each sentence such as sentence duration, if the sentence is first or last sentence in the speech and so on. Also, repetitive patterns between each two sentence of speech are discovered directly from speech signal by using S-DTW algorithm. S-DTW algorithm can discover repetitive patterns between two speech signals by using MFCC features. By using these repetitive patterns between each pair of sentences we can make a similarity matrix. Therefore, we could measure the similarity distance between each pair of sentences and eliminate redundant sentences from summary without the need to use an ASR system After finding the similarity between each two speech segments and extracting some features from each segment, various machine learning algorithms including unsupervised (MMR, TextRank), supervised (SVM, Naïve Bayes) and semi-supervised algorithms (self-training, Co-training) are used in order to extract salient parts. Experiences are done in read Persian news. The results show that using semi-supervised co-training method and appropriate features, the performance of speech summarization system on read Persian news corpus can improve about 3% compared to selecting the first sentences and by 5% compared to longest sentences when ROUGE-3 is used as the evaluation measure.    
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله هدی سادات جعفری | Hoda Sadat Jafari
Amirkabir University of Technology
دانشگاه صنعتی امیرکبیر

محمدمهدی همایون پور | mohammadmehdi homayounpour
Amirkabir University of Technology
دانشگاه صنعتی امیرکبیر


نشانی اینترنتی http://jsdp.rcisp.ac.ir/browse.php?a_code=A-10-939-1&slc_lang=fa&sid=fa
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/1315/article-1315-577512.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده مقالات پردازش گفتار
نوع مقاله منتشر شده کاربردی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات