این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 28 آذر 1404
فیزیک زمین و فضا
، جلد ۴۴، شماره ۱، صفحات ۲۴۵-۲۶۴
عنوان فارسی
استفاده از تحلیل همبستگی متعارف در مقیاسکاهی بارش سامانههای پیشبینی فصلی و توسعه همادی چند مدلی در شرایط زمان واقعی
چکیده فارسی مقاله
هدف از این پژوهش، ارزیابی روش تحلیل همبستگی متعارف (CCA)در ارائه پیشبینیهای فصلی بهصورت مقیاسکاهیشده در یک دوره بلندمدت 30 ساله است. این بررسی در غرب کشور ایران و با استفاده از برونداد بارش سامانههای پیشبینی فصلی همادی آمریکای شمالی انجام شد. بدینمنظور، در ابتدا بارش شبکهبندی شده بر اساس اطلاعات سنجشازدور(PERSIANN-CDR)با دادههای ثبتشده از 23 ایستگاه همدیدی ارزیابی شد. ضریب همبستگی PERSIANN-CDRبا دادههای ایستگاهی همدیدی بین 7/0 و 95/0 محاسبه شده است. سپس اریب دادههای سنجشازدور بهنسبت دادههای ایستگاههای همدیدی تصحیح و در انتها هر دو مجموعه داده (سنجش از دور- ایستگاه) تلفیق شدند. از مجموعه داده تلفیقشده بهعنوان بارش مرجع در ارزیابی سامانههای پیشبینی فصلی با تفکیک مکانی 1 و 25/0 درجه (برونداد مستقیم و پس از کاربست CCA) استفاده شد. مدلهای پیشبینیفصلی بهصورت انفرادی و وزندهی شده (سامانههای همادی متشکل از 2 تا 8 مدل) مورد استفاده قرار گرفت. برای ارزیابی مهارت این مدلها، معیارهای ارزیابی شامل معیارهای پیوسته و طبقهبندیشده است که در دوره صحتسنجی محاسبه شده است. در این دوره، همبستگی اسپیرمن بهعنوان شاخص نیکویی برازش، بیشینه شده است. شاخصهای ارزیابی بهصورت برونداد مستقیم و تصحیح شدهمقایسه شدند. نتایج نشان میدهد که همه شاخصها پس از اعمال CCA بهبود مییابند. لذا روششناسی پیشنهادی در مقیاسکاهی و پسپردازش سامانههای پیشبینی فصلی در محدوده مورد مطالعه کارا است. همچنین، سامانه همادی سهمدلی متشکل از CCSM4، CMC2، CFSv2 دارای مهارت بیشتر در مقایسه با همادی هشتمدلی و سایر مدلهای انفرادی است. این سامانه که دارای همبستگی اسپیرمن بیش از 6/0 با دادههای مرجع میباشد، بهعنوان مدل برتر با بیشترین نیکویی برازش در محدوده مورد مطالعه است. در اکثر محدوده مورد مطالعه، GFDL-aer04و سامانههای همادی چند مدلی توانستهاند در 80 درصد از سالهایی که بارش زیرنرمال اتفاق افتاده، بارش زیرنرمال را بهدرستی پیشبینی نمایند. یافتههای این پژوهش، کاربست روششناسی پیشنهادی در پیشبینی خشکسالی هواشناسی بهصورت زمان واقعی در فصل اکتبر- دسامبر در محدوده غرب کشور ایران را آشکار میسازد.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Developing Real-time Multi-model Ensemble and Downscaling of Seasonal Precipitation Forecast Systems: Application of Canonical Correlation Analysis
چکیده انگلیسی مقاله
The aim of this research is to evaluate a statistical method for downscaling the precipitation output of a number of Coupled General Circulation Models issuing seasonal forecasts 9 month in advance. Canonical Correlation Analysis (CCA) is applied for post-processing precipitation from the North American Multi-model Ensemble (NMME) project. The analysis is done for a long-term period (1986-2015) in the west of Iran. The area under study includes Karkheh River Basin where a significant reduction in renewable water resources has faced policymakers with challenges in water resources allocation and provision of environmental requirements to Hoor-al-Azim marshland downstream. PERSIANN-CDR biases are computed and corrected against in-situ observations by applying the multiplicative method. Bias corrected Satellite-based rainfall data merged with 23 gauge-based data. The approach for merging station-satellite-based rainfall estimation includes a spatio-temporal LM method which fits linear regression to the deterministic part of universal variation. It exhibits appropriate performance in terms of Correlation, Nash-Sutcliffe Efficiency and mean absolute error and multiplicative bias. After merging, correlation coefficients between the merged data and gauge-based rainfall are between 0.92 and 0.98 for all stations whereas it was between 0.7-0.95 for PERSIANN-CDR. The merged precipitation grided dataset is then used as the reference to evaluate NMME seasonal forecasting systems October-December being the target season. Forecasts initialized on the early October, September and August (lead time-0, lead-time-1 and lead-time-2 months, respectively) are evaluated for individual raw model outputs. Multi-Model Ensemble is also developed by assigning equal weights to individual models. Multi-model Ensemble which consists the 3 best individual models (CCSM4, CMC2 and CFSv2) outperforms all other MME which consist 2 to 8 models (ρ=0.560). It also outperforms CCSM4 which has the highest Spearman correlation of 0.486 among all models. Canonical Correlation Analysis (CCA) is then applied to individual and MME seasonal mean precipitation forecasts to correct biases in the position. Probabilistic forecasts are produced based on the best-guess forecast estimated by regression model (CCA). Predictand is transformed to normal distribution before performing the calculations. Then the forecast is transformed back to the empirical distribution. By assuming that the errors in the best-guess forecast are normally distributed, the variance of the errors is defined by the sampling errors in the regression parameters, and by the variance of the errors in the cross-validated predictions. Then the probabilities of exceeding the various thresholds (below normal, normal and above normal terciles) are calculated for issuing probabilistic forecast from 1986-2015. The goodness index is improved for all models after performing CCA especially for GFDL-aer04 and CMC1 having the most correctable systematic biases. 3 model-based MME is recognized to have highest skill (Spearman correlation=0.623) at 0-month lead time. The models also show high skill for initializations made in the early August and early September. ROC-area for below-normal precipitation is more than 0.5 for almost all models which shows the skill of NMME seasonal forecast systems in meteorological drought prediction. The skill of NMME in forecasting October-December precipitation in the west of Iran can help decision makers in real-time water resources and agricultural planning before water-year starts (In the late September).
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
حسین نجفی |
دانشجوی دکتری، گروه مهندسی منابع آب، پردیس ابوریحان دانشگاه تهران، ایران
علیرضا مساح بوانی |
دانشیار، گروه مهندسی منابع آب، پردیس ابوریحان دانشگاه تهران، ایران
پرویز ایران نژاد |
دانشیار، گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، ایران
اندرو ویلیام رابرتسون |
مدیر مطالعات اقلیمی مؤسسه پژوهشی بینالمللی برای اقلیم و جامعه، مؤسسه زمین، دانشگاه کلمبیا، نیویورک، آمریکا
نشانی اینترنتی
https://jesphys.ut.ac.ir/article_64863_0b4fda594bbeb9118b963934238b414c.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1035/article-1035-582555.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات