این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Electrical and Electronic Engineering، جلد ۱۴، شماره ۲، صفحات ۱۸۸-۲۰۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Recognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier
چکیده انگلیسی مقاله This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low frequency component is further processed with EMD technique to get IMFs. Eight features are extracted from IMFs of low frequency component. Unlike low frequency component, features are directly extracted from the high frequency component. All these features form feature vector which is fed to PNN classifier for classification of PQ issues. For comparative analysis of performance of PNN, results are compared with SVM classifier. Moreover, performance of proposed methodology is also validated with noisy PQ signals. PNN has outperformed SVM for both noiseless and noisy PQ signals.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله | M. K. Saini
DCR University of Science & Technology, Murthal (Sonipat), INDIA


| R. K. Beniwal
DCR University of Science & Technology, Murthal (Sonipat), INDIA



نشانی اینترنتی http://ijeee.iust.ac.ir/browse.php?a_code=A-10-2093-1&slc_lang=en&sid=1
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/446/article-446-639745.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده 1-Power Quality
نوع مقاله منتشر شده Research Paper
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات