این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Chemical Engineering، جلد ۱۵، شماره ۱، صفحات ۴۶-۷۲

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Investigation of spent caustic wastewater treatment through response surface methodology and artificial neural network in a photocatalytic reactor
چکیده انگلیسی مقاله In this research, photocatalytic degradation method has been introduced to clean up Spent Caustic of Olefin units of petrochemical industries (neutralized Spent Caustic by means of sulfuric acid) in the next step, adaptable method and effective parameters in the process performance have been investigated. Chemical oxygen demand (COD) was measured by the commercial zinc oxide that synthesized with precipitation synthesis method in a two-shell photoreactor. The percent of reduction of COD in the photocatalytic process was modeled using Box–Behnken design and artificial neural network techniques. It was concluded that the ANN was a more accurate method than the design of experiment. The effect of important parameters including oxidant dosage, aeration rate, pH, and catalyst loading was investigated. The results showed that all of the parameters, except pH, had positive effects on increasing COD removal. According to the obtained results, adsorption and photolysis phenomena had a negligible effect on COD removal.
کلیدواژه‌های انگلیسی مقاله ANN,RSM,COD,ZnO,photocatalytic removal

نویسندگان مقاله A. ahmadpour |
phd student of semnan university

A. haghighiasl |
academic staff.semnan university

N. fallah |
academic staff of amirkabir university


نشانی اینترنتی
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات