این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 3 دی 1404
گوارش
، جلد ۱۹، شماره ۴، صفحات ۲۶۵-۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Using Data Mining for Identify Patients at High Risk to Hepatocellular Carcinoma in the Cirrhosis Liver: Preliminary Report
چکیده انگلیسی مقاله
Background : Data mining has an interdisciplinary field including various scientific disciplines such as: database systems, statistics, machine learning, artificial intelligence and the others. In the field of medical, data mining algorithms can help physicians to diagnose diseases and chose the best type of treatment. Hepatocellular carcinoma has the most common type of liver cancer. Given the poor prognosis, Hepatocellular carcinoma (HCC) has the fourth leading cause of cancer-related deaths. In this article we aimed to build a decision support system which helps physicians for identify patients at risk to liver cancer. Materials and Methods: We analyzed 258 patients with cirrhosis liver. Patients have followed up for four years. We have used decision tree as a data mining tool, for identify patient at high risk to Hepatocellular carcinoma. Results: Decision tree determined the importance of attributes such as creatinine, INR and BMI which could be useful for prediction of cancer. From decision tree model, cirrhosis disease classification rules were extracted and used to improve the prediction of HCC. Decision tree could identify patients at risk to liver cancer with the accuracy of 88% for patients with Sustained virological response (SVR) and the accuracy of 92% for patients with non SVR found. Conclusions: According to decision tree results, attributes such as etiology, age, BMI, Platelet, Total Bilirubin, INR, Creatinine , Alfafetoproteina (AFP), and Serum Albumin can predict HCC in patient with cirrhosis. It is suggest that results examine with a greater number of patient.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
ملینا ابراهیمی خامنه | melina ebrahimi khameneh
محمد مهدی سپهری | mohammad mehdi sepehri
مهدی saberifiroozi | mehdi saberifiroozi
نشانی اینترنتی
http://www.govaresh.org/index.php/dd/article/view/1361
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Article
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات