این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 30 آذر 1404
Iranian Journal of Medical Physics
، جلد ۸، شماره ۲، صفحات ۲۷-۳۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Optimal Feature Extraction for Discriminating Raman Spectra of Different Skin Samples using Statistical Methods and Genetic Algorithm
چکیده انگلیسی مقاله
Introduction: Raman spectroscopy, that is a spectroscopic technique based on inelastic scattering of monochromatic light, can provide valuable information about molecular vibrations, so using this technique we can study molecular changes in a sample. Material and Methods: In this research, 153 Raman spectra obtained from normal and dried skin samples. Baseline and electrical noise were eliminated in the preprocessing stage with subsequent normalization of Raman spectra. Then, using statistical analysis and Genetic algorithm, optimal features for discrimination between these two classes have been searched. In statistical analysis for choosing optimal features, T test, Bhattacharyya distance and entropy between two classes have been calculated. Seeing that T test can better discriminate these two classes so this method used for selecting the best features. Another time Genetic algorithm used for selecting optimal features, finally using these selected features and classifiers such as LDA, KNN, SVM and neural network, these two classes have been discriminated. Results: In comparison of classifiers results, under various strategies for selecting features and classifier, the best results obtained in combination of genetic algorithm in feature selection and SVM in classification. Finally using combination of genetic algorithm and SVM, we could discriminate normal and dried skin samples with accuracy of 90%, sensitivity of 89% and specificity of 91%. Discussion and Conclusion: According to obtained results, we can conclude that genetic algorithm demonstrates better performance than statistical analysis in selection of discriminating features of Raman spectra. In addition, results of this research illustrate the potential of Raman spectroscopy in study of different material effects on skin and skin diseases related to skin dehydration.
کلیدواژههای انگلیسی مقاله
Classification, Genetic Algorithm, Raman Spectroscopy
نویسندگان مقاله
زهره دهقانی بیدگلی | zohreh dehghani bidgoli
ph.d. student, biomedical engineering dept., faculty of electrical engineering, tarbiat modares university, tehran, iran.
سازمان اصلی تایید شده
: دانشگاه تربیت مدرس (Tarbiat modares university)
محمد حسین میران بیگی | mohammad hosein miranbaygi
associate professor, biomedical engineering dept., faculty of electrical engineering, tarbiat modares university, tehran, iran.
سازمان اصلی تایید شده
: دانشگاه تربیت مدرس (Tarbiat modares university)
رسول ملک فر | rasool malekfar
associate professor, physics dept., faculty of basic sciences, tarbiat modares university, tehran, iran.
سازمان اصلی تایید شده
: دانشگاه تربیت مدرس (Tarbiat modares university)
نشانی اینترنتی
http://ijmp.mums.ac.ir/article_7213.html
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Paper
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات