این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
Iranian Journal of Medical Physics
، جلد ۵، شماره Issue ۳,۴، صفحات ۲۵-۳۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
چکیده انگلیسی مقاله
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced independent component analysis (W- ICA), and HMM combined with a multi-layer perceptron (MLP) neural network were used for P300 detection in electroencephalogram (EEG) signals. The BCI2005 competition dataset was used for their evaluation. First, electrooculogram (EOG) artifacts in the EEG signals were removed using W-ICA. Then, background EEG noise was suppressed using a B-Spline wavelet transform. Finally, these signals were classified using the HMM. Results: We used accuracy, sensitivity, specificity, positive predictive value, and negative predictive value to evaluate the performance of the proposed algorithm. The primary results in this research show that the HMM can perform much better using an auxiliary classifier. To this end, an MLP neural network was used to select the classes based on the outputs of the HMM models. The classification rates obtained for 15 and 5 times averaged test signals were 81.6% and 50.7% respectively. Discussion and Conclusion: Based on the obtained results, we may conclude that the HMM can be used for online P300 detection.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
علی راستجو اردکانی | ali rastjoo ardakani
msc in medical engineering, medical physics and medical engineering dept., faculty of medicine, tehran university of medical sciences, tehran, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی تهران (Tehran university of medical sciences)
حسین عرب علی بیک | hossein arabalibeik
assistant professor, medical physics and medical engineering dept., faculty of medicine, tehran university of medical sciences, tehran, iran
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی تهران (Tehran university of medical sciences)
نشانی اینترنتی
http://ijmp.mums.ac.ir/article_7502.html
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Paper
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات