این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 28 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۹، شماره ۱، صفحات ۱۱۷-۱۲۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
چکیده انگلیسی مقاله
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utilizing modal Bernstein polynomial basis. This gives a polynomial expression for the beam configuration. To do so, a polynomial basis satisfying the boundary conditions is presented by using the properties of the Bernstein polynomials. In the second approach, we first transform the problem into an equivalent Volterra integral equation with a convolution kernel. Then, the second order convolution quadrature method is implemented to discretize the problem along with a finite difference approximation for the Neumann boundary condition on the free end of the beam. Comparison with the experimental data and the existing numerical and semi-analytical methods demonstrate the accuracy and efficiency of the proposed methods. Also, the numerical experiments show the Bernstein-spectral method has a spectral order of accuracy and the convolution quadrature methods equipped with a finite difference discretization gives a second order of accuracy.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
Mohammadkeya khosravi |
Institute of Applied Mechanics, Graz University of Technology, Technikerstrasse 4, 8010 Graz, Austria
Mostafa Jani |
Department of Mathematics, Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran
نشانی اینترنتی
http://ijnaa.semnan.ac.ir/article_3086_2fa91707207706c3ca97107695829a94.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/424/article-424-793390.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات