این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 27 آذر 1404
زمین شناسی مهندسی
، جلد ۱۲، شماره ۵، صفحات ۰-۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Application of artificial intelligence methods for estimation of maximum surface settlement caused by EPB shield tunneling
چکیده انگلیسی مقاله
Maximum surface settlement (MSS) is an important parameter for the design and operation of earth pressure balance (EPB) shields that should determine before operate tunneling. Artificial intelligence (AI) methods are accepted as a technology that offers an alternative way to tackle highly complex problems that can't be modeled in mathematics. They can learn from examples and they are able to handle incomplete data and noisy. The adaptive network–based fuzzy inference system (ANFIS) and hybrid artificial neural network (ANN) with biogeography-based optimization algorithm (ANN-BBO) are kinds of AI systems that were used in this study to build a prediction model for the MSS caused by EPB shield tunneling. Two ANFIS models were implemented, ANFIS-subtractive clustering method (ANFIS-SCM) and ANFIS-fuzzy c–means clustering method (ANFIS-FCM). The estimation abilities offered using three models were presented by using field data of achieved from Bangkok Subway Project in Thailand. In these models, depth, distance from shaft, ground water level from tunnel invert, average face pressure, average penetrate rate, pitching angle, tail void grouting pressure and percent tail void grout filling were utilized as the input parameters, while the MSS was the output parameter. To compare the performance of models for MSS prediction, the coefficient of correlation (R2) and mean square error (MSE) of the models were calculated, indicating the good performance of the ANFIS-SCM model.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
| Hadi Fattahi
Department of Mining Engineering, Arak University of Technology, Arak, Iran
| Zohreh Bayatzadehfard
Department of Mining Engineering, Arak University of Technology, Arak, Iran
نشانی اینترنتی
http://jeg.khu.ac.ir/browse.php?a_code=A-10-807-1&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
ژئوتکنیک (مکانیک خاک و سنگ)
نوع مقاله منتشر شده
مقاله مستقل
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات